
An Architecture for Distributed Multimedia Database
Systems 1

P.B. Berra C.Y.R. Chen A. Ghafoor C.C. Lin*

T.D.C. Little D. Shin*

Department of Electrical & Computer Engineering

Syracuse University

Syracuse, NY 13244-1240

*School of Computer and Information Science

Syracuse University

Syracuse, NY 13244-4100

Abstract– In the past few years considerable demand for user oriented multimedia information

systems has developed. These systems must provide a rich set of functionality so that new,

complex, and interesting applications can be addressed. This places considerable importance

on the management of diverse data types including text, images, audio and video. These

requirements generate the need for a new generation of distributed heterogeneous multimedia

database systems. In this paper we identify a set of functional requirements for a multimedia

server considering database management, object synchronization and integration, and multimedia

query processing. A generalization of the requirements to a distributed system is presented,

and some of our current research and developing activities are discussed.

1Computer Communications, (Special Issue: Multimedia Communications), Vol. 13, No. 4, May 1990,
pp. 217-231. This research was supported in part by the NYNEX corporation through the New York State
Center for Computer Application and Software Engineering (CASE) at Syracuse University.

1 Introduction

With the introduction of broadband communications and multimedia databases to business

and consumers there comes a variety of new distributed applications. These include office

information systems, geographical database systems, CAD/CAM systems, magazine production

systems, medical information systems and a variety of military applications [CHR86]. Some

systems have been implemented on an experimental basis [IRV88, KIM88, LIN89, NAF86,

THO85, YAN88]. However, there are many limitations which must be overcome before these

systems can be effectively utilized by the growing list of application developers.

One of the main objectives of multimedia information systems is to utilize current as

well as future databases. A major challenge is to interconnect these databases and provide

transparent services in the presence of considerable heterogeneity. Currently, there exist more

than 3000 publicly available online databases, as well as a great number of private databases

[ELS87]. Most of these databases can be accessed and potentially used for multimedia

services. In a general multimedia environment, databases would contain various types of

information such as text, voice, images, and full-motion video. In addition, they may be

heterogeneous, with significant differences among local data managers, local data models

and representation. Therefore, a primary objective in designing a distributed multimedia

environment is to provide services that are transparent as to the nature and type of databases

which need to be accessed to compose objects for the users. This can ensure that a user

need not learn different database query and object manipulation languages.

As an illustration, suppose a doctor in an emergency room finds a patient in trauma

with a severly damaged kidney. The patient needs an urgent kidney transplant. The

doctor quickly retrieves a summary of the patient’s medical history from his/her hometown

120 miles away. The history contains multimedia information such as X-ray’s, CAT scans

and other information. At the same time the doctor retrieves information regarding the

availability of a kidney from a national database. The kidney which can be used must have

certain physiological requirements which can be determined only by consulting the database

containing the medical history of the patient. By simultaneously browsing through both

databases, the availability of an appropriate kideney can be determined. In order to help the

doctor make a decision, two different databases, presumably located at remote sites, must be

accessed and the necessary information must be displayed in an integrated form to the end

user. Furthermore, suitable database manipulation commands for browsing and updating

the patient’s medical history database must be available to the doctor. It should be noted

that updating can be quite complex since storage of new X-ray’s or CAT scans may need

2

specialized I/O devices for communicating information.

From the hypothetical example given above, it is clear that due to the diversified nature

of users and information, a very important problem is how to represent, store, and fetch such

information. An efficient solution to this problem may use the object-oriented approach in

which each information unit is treated as an object with a topological structural description,

or graph model, attached to it. Each information unit may be text, video, image, or data; or

even a combination of them. Different kinds of information can be stored in different forms.

For example, full-motion video signals as well as audio signals can be stored in an analog form

on an optical disk. Subsequently, fetching objects and integrating them into a single object

can require sophisticated manipulation. The object-oriented data representation problem has

been extensively studied in the literature [KOS87]. However, the development of efficient

distributed architectures to support such models has not been addressed.

The objective of this paper is to address a variety of fundamental design issues which

are critical for the development of future distributed Heterogeneous Multimedia Database

(HMD) system. Our remarks are partitioned into three main categories, namely, database

management for multimedia information, object management in a distributed environment,

and communication considerations to support broadband multimedia services. Accordingly,

a set of functional requirements for an HMD system is derived, and a general design framework

for the HMD system is presented. A methodology to manipulate a multimedia object in this

system is also described.

The organization of this paper is as follows. In the next section the main functions of

a multimedia server are specified. Based upon these specifications, a layered architecture

of a centralized system is proposed in Section 3, which is currently being prototyped. This

architecture provides a framework for the distributed system, which is discussed in Section

4. The concluding remarks are given in Section 5.

2 Functional Requirements for a Multimedia Server

A multimedia server is a source of diverse databases which can be used for a wide range of

applications. Its main function is to provide an environment in which a user can develop

suitable multimedia applications by using the information available in a network. Generally

speaking, this environment should be transparent to the heterogeneous nature of databases

being accessed by the users from the database server. In order to achieve these goals, a

3

number of functional requirements need to be specified for the server. The specifications

for these functions in a centralized server, one without distributed multimedia sources, are

the major theme of this section. Accordingly, a layered architecture of a centralized server

is presented which is currently being implemented at Syracuse University. The distributed

architecture based on this model is discussed in a later section.

The functionality of a multimedia server is much more complex than a conventional

database manager. The multimedia server is not only responsible for managing complex

information, which can be a form of text, images, audio and even full-motion video, but

also must have the capability to integrate various information units to compose objects,

which are of interest to the users. Object composition and manipulation can involve linking

multiple objects, editing objects, enforcing consistency and protection for objects, and

ensuring synchronization among information units which constitute objects. Due to the

diverse nature of information, these functions are far more complex to implement than those

provided by a conventional database system. The second important function of a server is

to store and manage all kind of multimedia databases locally available on that server. These

databases may be large archival databases available on optical disks or dynamic databases

stored on high speed magnetic disks. We now describe their functional requirements in more

detail.

2.1 Database Management Requirements

The major database mangement functions required by a server include file management

and schema management for formatted data, scheduling of concurrent retrieval requests,

implementing multidimensional browsing for video databases, synchronizing updates, handling

of insertions, maintaining data integrity, version control and others. We now briefly describe

each type of database and specify the supporting storage and management system.

2.1.1 Text and Formatted Data

Database systems based on relational or hierarchical model such as INGRES [HEL75] and

SYSTEM R* [AST76] are well suited to managing formatted data. Database systems based

on these models generally provide efficient access paths to data in secondary storage by

maintaining some type of indexing scheme. Examples of general indexing schemes supported

by these systems include variants of B-trees and Hashing. Queries based on a number of key

values such as partial match queries are supported by using intersection operations. Tree

4

structure and hashing can be extended to N dimensional data in order to support partial

match queries. Examples include k-d trees and multi-dimensional extensible hashing.

Each indexing scheme has its own advantages and disadvantages depending on the nature

of query processing and data life time. When the database is static and most queries are

based on few keys, an inverted index would be the best indexing scheme. On the other hand,

when the database is to be frequently updated, and partial match queries based on a number

of key values are common, surrogate files [BER87] and most dynamic multidimensional file

structures can provide better performance in retrieval and update over other schemes.

Maintaining indexes for large unformatted textual data requires an even more complicated

strategy as the size of the index itself can easily grow beyond manageable size when full text

inversion is used for indexing. Although the access rate of this type data is not as crucial

as the real-time deliverable data (video, audio etc.), the large index size could prevent the

database system from performing real-time updating.

2.1.2 Audio and Music Data

Due to their nature audio waveform signals are usually sampled, encoded and then stored.

In general, a higher quality encoding scheme requires a greater amount of memory space.

An alternate approach to provide users with their desired audio signal is to use the approach

of speech synthesis [WOE87]. However, this requires sophisticated processing and is usually

slow. Compared to the speech signal, music signals are much more regular and structural.

This implies that describing the abstraction of music signals at a high level is possible. A

graph model has been proposed for this purpose [RUB87], where common musical notations

are used to represent the structures of the graph.

2.1.3 Image Data

Many data structures have been proposed for storing images in a database system. These

include pixel-oriented [CHO84], quadtrees [SAM84], R-trees [ROU85] or vector based [JUN85].

Most digitized images consist of a header representing format, size, and the number of bits

used for representing a pixel, a set of color map values, and the pixel image data in order to

allow browsing and conversion to another image format. FIVE (Format Independent Visual

Exchange) is a collection of image manipulation packages developed by Bellcore to solve the

incompatibility problem among various applications [BEL88]. FIVEtools includes utilities

5

for generating information about image files, displaying images, creating a new format from

an old one (e.g. color to gray scale), compressing images, and editing images.

The image data is passive in nature, that is, it is generally accessed via unique id’s

without indexing for its contents, but requires large amounts of data space. To save storage

space and enhance communication performance, the size of image data can be reduced by

using data compression techniques.

2.1.4 Full-Motion Video Database System

Video data is unique in its nature in the sense that it can be totally in analog form containing

both video frames and associated audio signals. The information can be stored in the

same way as in video cassettes with the functions of replay, freezing frame, advancing, etc.

However, in order to integrate this information with other data it must be digitized in order

to prepare composite digital data packets carrying requested multimedia object information

for the user. Therefore, analog to digital conversion and compression of video data needs

to be carried out by the server. The equivalent inverse function needs to be performed at

the user end. This signal processing can be avoided if the video information is prestored

in a digitized compressed form. In digital form, data manipulation is much more flexible

compared to analog form. However, irrespective of the nature of information, this service

requires an enormous capacity for storage and very high access rate. Optical disks can be

ideal for storing this information.

2.1.5 Physical Database Access Methods for Multimedia Data

As described above, the size of a multimedia data object can be very large, which may

occupy multiple blocks in secondary storage. Furthermore, unlike conventional data models,

an object can have a complex logical structure and can be shared among other objects at

various levels. Therefore, the design of a physical storage structure for multimedia database

systems is more demanding than that of conventional database systems. In order to improve

the I/O performance, the use of parallel disk systems with suitable storage models has been

investigated [COP85, KIM86, KHO88, THI87].

Current advances in parallel disk processing has accomplished dramatic improvements on

data transfer rate from secondary storage. For example, the Connection Machine’s parallel

disk system (Data Vault) demonstrates data rate up to 40 megabytes/sec by incorporating

6

40 small disks [THI87]. The data transfer rate is actually proportional to the number of

disks that can be accessed in parallel [KIM86]. Thus, by increasing the number of disks, it

is technically feasible to achieve even higher transfer rates. Also optical disks using multiple

beams have the potential for massive data rates [BER89]. However, there exists a five to six

order of magnitude difference in access time between main memory technology and secondary

storage technology. This cannot be alleviated by the use of parallelism and therefore is at

the heart of the problem in data intensive applications.

One of our approaches to solving this problem is to store a large data object in physically

adjacent blocks in secondary storage. Let s, r, and t be the seek time, rotational delay and

data transfer rate of a disk drive, and let k and b be the total number of disks and the

number of continuous blocks occupied by a complex object. Then, the data loading time

can be represented by T = s + r + b/(t × k) which is considerably more efficient than that

of randomly stored blocks (T ′ = b× (s + r + 1/(t× k))). The use of effective buffering also

help increasing the performance by overlapping processing with I/O [BER79].

The physical data model also needs to support retrieval of relevant objects in response

to user queries. Storage models for managing complex objects can be classified into three

types [COP85, KHO88] including direct storage model (DSM), normalized storage model

(NSM), and fully decomposed storage model (FDSM). DSM stores an entire object as a

whole allowing fast retrieval of the object via object identifier, but does not support queries

based on some key values and is not suitable for representing shared objects. Passive objects

such as audio and image data can be stored using DSM in continuous blocks. FDSM and

NSM are based on decomposition of complex objects into more simple structures. FDSM

is a fully transposed storage model where each attribute is represented by a set of pairs

of the form (object id, value), while NSM decomposes a complex object into a number of

sets of tuples of the form (object id, value1, value2, ..., value k) by using a normalization

mechanism. General index schemes can be applied to these models to support active data;

for example, B-tree for FDSM and multidimensional dynamic files for NSM.

2.2 Object Synchronization and Integration Requirements

The main function of a server is to integrate information of units according to the semantic

representation of a multimedia object, requested by a user. The relationship between various

information entities may be temporal and thus time ordering needs to be maintained if

browsing through databases is requested by the user.

7

We use a technique for the formal specification and modeling of multimedia composition

with respect to inter-media timing called Composition Petri Nets (CPN) [LIT90]. The model

is based on the logic of temporal intervals, and Timed Petri Nets. Through the model, the

synchronization requirements of complex structures of temporally related objects can be

easily specified.

2.2.1 Petri Nets

The presentation of multiple media is inherently a task which requires parallelism as well as

sequencing. In this case the parallelism is in presentation and processing of multiple data

streams. As mentioned, we have chosen a modified version of the Petri net [PET77], for a

representation of the synchronization of multimedia entities.

For simple Petri nets, the time from enabling a transition to firing is unspecified and

indeterminate. A class of enhanced Petri net models have been developed which assign a

firing duration to each place [COO83]. These models are generally called timed Petri net

(TPN) models, and map well to Markov performance analyses. Nonnegative execution times

are assigned to each place in the net. With this scheme the notion of instantaneous firing

of transitions is preserved, and the state of the system is always clearly represented during

process execution (tokens are at all times in places, not transitions). This “augmented” model

has the advantage of compactness of representation. The augmented model is supplemented

with resource information associated with TPN models for the purpose of illustrating the

use of the multiple media. This model is called the Composition Petri Net (CPN) [LIT90].

To illustrate multimedia synchronization using CPN, consider the following example. A

multimedia slide presentation is to be represented. The presentation consists of a sequence of

synchronized audio and visual elements of varying duration. Assume that there are n slides

to present, and corresponding to each slide is a verbal annotation. On a time/resource line,

we may represent the presentation as two streams of information which occur concurrently, as

in Figure 1. Time is indicated on the horizontal axis. Resources are described by a dimension

on the vertical axis indicating multiple threads of presentation which we call space. Using

our Petri net representation, these activities are indicated by the Petri net in Figure 2.

For each place we have assigned the required presentation resource (device), and the time

required to output the presentation data. The net indicates the points of synchronization

between the two data streams. The transitions in the net indicate points of synchronization,

and the places represent processing. For example, upon completion of the first verbal

8

Figure 1: Slide Presentation Timeline

Figure 2: Slide Presentation Petri Net

annotation, place t1, represented by talk1, unlocks its token. Because elements of the

image (slide) and audio data streams have the same respective durations, the place s1,

indicated by slide1, unlocks its token synchronously with place t1. The common transition

fires immediately, allowing the next image/audio pair to be presented.

It is possible to represent arbitrarily complex synchronization with this technique. Various

degrees of granularity are possible as well. For example, full-motion video usually has an

associated audio component. If one decomposes the video to individual frames, which

are output at 30 per second [LIP80], matching audio may be synchronized in segments

corresponding to frames in a Petri net structure as in the slide presentation example.

Videodisc technology permits access of individual frames of full-motion video, which is

important for building multimedia systems.

To provide a multimedia information service, the specification must be utilized in a

manner to support the desired applicability. For an information storage and retrieval service,

we must maintain the information necessary to synchronize any two data sources. This

information clearly consists of a temporal relation, TR, and the temporal intervals τα, τβ, and

τδ, between process entities [LIT90]. Given this information, we may completely construct

the synchronized process interaction, modeled by a Petri net. Recalling the slide presentation

9

example, a process interaction is completely specified except for the temporal relations. For

this example, between corresponding audio and image components the concurrent temporal

relation equals is valid, with equal values for τα and τβ . Between sequential image/audio

pairs the sequential relation meets holds with time values τα and τβ corresponding to the

durations of successive pairs of elements.

We present a detailed example which elaborates the ideas and models previously presented.

The example contains both static and dynamic data in the form of audio, image and textual

data which require synchronization at the presentation level.

2.2.2 An Anatomy & Physiology Instructor: An Example for Data Integration

The Anatomy and Physiology Instructor is a simple multimedia application example based

on the hypermedia paradigm and temporal relation specification. Figure 3 indicates the

coarse grain hypermedia network for the Anatomy & Physiology Instructor. We assume

that arcs in this figure represent links between informational units, represented by nodes,

which contain lessons. Beginning at the Start node, users may browse via link selection or

formulate explicit queries against the overall database.

When browsed or selected, information at a node is activated, causing its subsequent

retrieval and presentation. For example, browsing Alveolar Ventilation assuming an initial

starting point of Respiration, causes the information associated with that node to be

presented. Fine grain synchronization is performed within the informational units.

A database structure is developed at two levels. At the coarse grain we desire the

ability to select information units such as Heart or Kidneys. At the fine grain the

synchronization constraints must be specified for concurrent presentation of various media

elements. Each information unit may have different presentation requirements requiring

distinct synchronization specification. Ideally, one specification suffices for all information

units, simplifying the task of presentation design. For the general case, all nodes have

different characteristics. We describe the synchronization requirements for one information

unit; Heart Muscle.

To specify the synchronization requirements within an information unit a model for the

presentation of information is required. For the example, the model used is based on the

sample workstation screen indicated in Figure 4.

In this figure the informational unit Heart Muscle is presented. Note the different

10

Figure 3: Anatomy & Physiology Instructor Information Network [LIT90]

regions associated with the various media types including audio, video, text, image, and

animated image (Views). Let us assume some characteristics and relationships between

elements for this example. Figure 5 indicates possible relationships in time of the various

elements of the example. This timeline representation shows that the textual component, the

icon, and the “Location in body” images should persist for the duration of the informational

unit presentation. The views are specified to change with time to provide a gradual rotation,

or animation, of the organ selected, while the video and associated audio components begin

presentation after a constant delay of τ13. On the spatial axis are indicated the resources r1

through r8, associated with the workstation screen regions and the audio output.

Synchronization of the media elements is specified by the CPN model. By combining

elements of the presentation in temporally related pairs, we create a CPN for the information

unit shown in Figure 6. This CPN indicates the processing required for the presentation of

a single Anatomy & Physiology Instructor information unit.

Between transition t1 and t9, we see a maximum of eight threads of presentation corresponding

to the timeline of Figure 5. At the outset, seven threads are created as indicated by the initial

transition, t1. Places p16 through p19 represent static data which is active for the duration of

11

Figure 4: Workstation Instance [LIT90]

12

Figure 5: Anatomy & Physiology Instructor Timeline

Figure 6: Anatomy & Physiology Instructor CPN

13

the presentation. The two interacting threads, p1, p3, p5, p7, p9, p11, and p2, p4, p6, p8, p10, p12,

represent the animation of two views of the organ, synchronized at points indicated by

t4, t5, t6, t7, t8, and t9 of the CPN. The places p14 and p15 represent dynamic audio and video

data, delayed by τ13.

Having specified the synchronization requirements of an informational unit, we create a

database schema to store the medical data and temporal relationships between data items.

In assigning data to the database schema we must maintain temporal consistency. According

to our CPN model, the pairings we have chosen, and the temporal relations used, we have a

set of consistency requirements:

Duration of unit

= τ1 + τ3 + τ5 + τ7 + τ9 + τ11

= τ13 + τ14 = τ16 = τ17 = τ18 = τ19

τ14 = τ15, τ1 = τ2, τ3 = τ4, τ5 = τ6, τ7 = τ8, τ9 = τ10, τ11 = τ12

By storing data which satisfy these constraints, the system performs as specified by the

CPN, without delays caused by inappropriate values.

Consider the interaction of a user with this multimedia system. If we use subnet replacement

we may describe any node in the network graph as an equivalent Petri net place. Browsing

or selecting nodes permits the sequential access of information units. By representing

the selection activity as a query, a Petri net description of browsing a particular path is

formulated. Figure 7 shows a net indicating the sequential access of the information units

Heart, Pulmonary Circulation, and Pulmonary Mechanics in response to queries

Q1, Q2, and Q3. Using this notation one could assign bidirectional Petri net transition at

each link (arc) in the information network to describe all possible browsing maneuvers. A

complete Petri net description of the application results.

The examples presented clearly illustrate how we may use the CPN modeling strategy

for many scenarios. Recapitulating, we have indicated the tools and strategy for the formal

specification of multimedia object composition with respect to synchronization. Using CPN,

multimedia objects may be choreographed in time and stored in a database indicated by a

schema developed using the CPN. This database is utilized as a storage element supporting

multiple access techniques including conventional query systems, hypermedia, functional,

and procedure oriented methods.

14

Figure 7: Petri Net Representation of Browsing

2.3 Multimedia Query Processing

In this subsection, the query language and processing methodology for supporting a multimedia

system are presented. Due to the diverse indexing techniques required for multimedia

information, the conventional relational model has been recognized to be inadequate. In

order to solve this problem, an object-oriented approach is used in this project, where each

multimedia information unit is represented by an object, and an object may in turn consist of

a number of subobjects (which can be text, image, video, audio, or a combination of them).

In object-oriented programming, the main functions are defined as methods which are

procedures that implement operations defined on an object. For example, an image object

may have methods to display, rotate, zoom in, and zoom out. A request that an object

performs one of its operations is accomplished by sending a message to this object.

As mentioned earlier, data synchronization is one of the most important tasks in a

multimedia system. It can be solved, at a low level, by defining a method called a trigger, in

each object. A trigger executes automatically when its corresponding object is to be accessed.

Therefore, the temporal relationship among objects (which, at a high level, are represented in

Petri nets) can be established. At the programming level, a trigger can be implemented with

a predicate and a body. When the predicate becomes true, the body is executed. Inheritance

is a mechanism of sharing information among objects with similar behavior, which will allow

a more efficient utilization of memory space in a multimedia system. Multiple and multiple

level inheritance can also exist in order to support cross references.

Object composition is a way of combining related subobjects into a hierarchical structure,

called a complex object, such that query operations can be performed directly on the complex

object without going into the details of each subobject. In addition to simplifying query

15

processing, a complex object may also be a natural cluster in physical storage. This will

reduce the required indexing time in accessing physical storage as well as memory space in

supporting such indexing structures. Current multimedia systems only support user interface

(such as [SUN87, THO85]) or simple object (in contrast to complex object) manipulation

(such as [SCH85]). Research in the complex object query processing is still at a rudimentary

stage.

In the following few paragraphs some multimedia query language syntax and semantics

are illustrated as examples.

A class of objects, Personnel, can be declared using the command CREATE:

CREATE CLASS Personnel

name : { < last-name : Employee.last-name

first-name : Employee.first-name > }

age : { Employee.age }

salary : Employee.salary

hobby : hobby.type

skill : { < type : skill.type

license : { < date : skill.date

city : skill.city >

<> modify } > }

project : { < abstract : textindex

content : { <text : textindex

image : imageindex >

<> modify } > }

In this example, each person is represented by a complex tuple with attributes: name, age,

salary, hobby, skill, and project, where each “<> modify” indicates that modifications on the

corresponding field of information are prohibited. A graphical representation of the above

example is shown in Figure 8.

In many cases, a user is only interested in a subset of information stored in the database.

Therefore, it is necessary to introduce commands which will allow the creation of user views

of the database. For example, the following command generates a user-view object schema

(Figure 9) from the example described earlier:

DECLARE VIEW introduction UPDATE

16

Figure 8: An Example of the Personnel Object Schema

17

Figure 9: User View Object Schema

FROM QUERY

Retrieve (name : X.name

Salary : X.salary

project : X.project.content)

where X.name = “Smith Erbe”

where introduction is the reference point for this schema. Many other multimedia commands

to allow users to open, delete, evaluate, navigate, move, modify, insert, etc., are also being

developed.

3 Current Development of a Multimedia System

Given the requirement for multimedia system, we are developing a distributed system which

contains three major nodes: an experimental platform, an eight-station SUN/4 cluster, and

a Gould image processing machine. The networking of the three nodes is shown in Figure

10. Currently, a centralized multimedia system is being developed on the experimental

platform node. After that, the generalization of such a centralized system to a distributed

18

Figure 10: Current Distributed System Configuration

one will be performed. The system developed on the experimental platform node will then be

transferred to each workstation of the eight-station cluster. Moreover, all the computation-

intensive image processing routines will be performed on the Gould image processing machine

such that bottlenecks can be removed from the overall system. The detailed description of

the experimental platform node is given below.

The architecture of the proposed centralized multimedia system is partitioned into three

layers: database management system, data composition, and user interaction. Figure 11

shows a hierarchical ordering corresponding to the relationship among these components

using the layered software specification approach. The interactive layer provides user access

methods for object retrieval, while the data composition layer maps user level operations

onto the data structures of the DBMS layer.

19

3.1 Multimedia Database Management Layer

The database management layer of our architecture consists of portions for managing both

formatted (text and numeric) and unformatted data (audio, video, images). Note that

we have decomposed the software architecture, allowing the data composition and database

layers to be distributed throughout a multiple server system when we consider the distributed

multimedia environment.

The DBMS component is responsible for all database management functions previously

mentioned. Upon the request of a local controller, the appropriate databases are accessed

and data is passed on. The architecture of this component consists of independent database

managers for each database system which are directly interfaced to a multiprocessor system.

An effective storage system can be a database machine such as the Teradata DBC 1012

[TER88] or IDM machine [BLC88] which can directly control the local databases. The

controlling of structured text and data can be performed by conventional database managers

while the non-formatted data can be placed under the management of specialized database

controllers available on the machine. In either case, the database system needs to be

interfaced with a local controller. This interface must be in the form of multiple I/O ports

in order to support fast transfer of parallel data streams between the local controller and the

high speed storage devices. An effective way to provide a low latency parallel interface is to

use a multistage interconnection network between these systems. The network is a typical

shuffle exchange network which can be build using off-the-shelf switching elements. Such

networks can have fairly small latency times and have been successfully used for building

large multiprocessor systems [DAV86]. This layer is of considerable interest to us since we

are quite interested in the design and development of a multimedia database machine.

3.2 Object Composition Layer (Synchronization and Integration)

The data composition layer is responsible for enforcing the temporal synchronization and

spatial integration requirements indicated by the multimedia database schema. Synchronization

parameters, indicated by the CPN modeling tool described in Section 2, and stored in the

database, choreograph the multimedia presentation. Similarly, spatial integration requirements

are stored in the multimedia database using an object-oriented paradigm. This object

composition component of the software system functions to bring together multiple types of

data for the multimedia presentation. This layer is central to the the functionality of the

multimedia system and interacts with both the DBMS and the interactive component of the

20

system.

3.3 Interactive Layer (Query Processing)

The interactive layer consists of the user interface including graphics and basic user operation

functionality. In this layer we find database query operations such as relational manipulation

and browsing via hypertext links. Also there are editing modules providing manipulation of

various types of multimedia data including text, voice, graphics, and images.

The data of multimedia documents can be divided into two major parts: formatted data,

such as integer and text, and unformatted data, such as image, graphic, and audio. In

the existing multimedia systems, such as Intermedia [YAN88] and Telesophy [SCH85], the

users can only specify conditions on the content and existence of formatted data. Access

methods are only defined on these parts. Therefore, although we discuss a system for

storing and retrieving the multimedia documents, query processing actually is only based

on the formatted data of these multimedia documents. Further development of multimedia

information management must include query on unformatted data as well as conditions on

the existence and content of formatted data.

Query processing, which is a difficult problem in traditional DBMSs, becomes even more

difficult when dealing with a multimedia document. Our query processing is based on a

conceptual data model which is on top of the internal data model for the description of

complex objects. This allows the system to exploit the rich structures of these objects

during query processing. In addition, we combine different access methods for different data

types found in the complex objects. The characteristics of the different access methods, plus

the information about which access path to use for the particular components, allows the

system to optimize query evaluation.

3.4 Hardware Configuration

At Syracuse University a prototype is being developed for a centralized Multimedia Server.

Figure 12 shows the current hardware configuration of this server. The main component

in this configuration is the SUN4/260 server, which has 500 Megabytes of disk space and

a Parallax graphics 1280 series processor board [PAR88] with frame buffers for fast image

processing. The Parallax board also allows real-time displaying and capturing of live video

images. The system includes two additional SUN workstations. The SUN/386i workstation

21

Figure 11: Proposed Multimedia Application Platform

22

has 300 megabytes of disk space which is primarily used as a back up for the main server

Sun4/260. The workstation SUN3/60 is a diskless unit and is used for developing multimedia

applications. The capturing of live images through the Parallax is facilitated by a multimedia

tool, known as PNeWS [PAR88]. A brief description of this tool is given in the next section.

The color monitors attached to the Parallax board are used for displaying the graphics

and video information. Additional interface units attached to the server include a QMS

PostScript laser printer, a QMS color PostScript laser printer, a Sharp color scanner, a Sony

video disk player, and a Sony video cassette recorder. The color scanner allows the creation

of up to 300 dpi (dot per inch) images. The images created by the scanner can be used in

both standard SunView and PNeWS environments. The video disk player and video cassette

recorder are used as sources for live video. They can be accessed through PNeWS.

A number of multimedia software tools are currently resident on this configuration. These

tools are expected to be used to implement the layered architecture of a centralized server

shown in Figure 11. From the functionality point of view these tools can be classified into

three categories; window management system, database management system, and image

management system. We provide a brief description of these tools, which are currently

loaded on the server.

3.4.1 Window Management

We are currently using NeWS (Network Extensible Window System) [SUN87] for providing

high quality graphics and window management. NeWS is a distributed window management

system based on the extension of the generalized concept of PostScript. The extension

includes event management for user interactions, an interprocess communication handling

facility among local and remote processes, and powerful graphic primitives for display. NeWS

supports true Postscript-compatible graphics calls and handles such operations as zooming,

scrolling, and panning. In a network or distributed environment, a workstation running

NeWS is considered as a NeWS server which can be connected to client machines such

as database machines or multiprocessor systems. PNeWS is an implementation of NeWS

for Parallax Videographics Processors to provide video capabilities including display of live

video, still video frames, and integration of graphics and video [PAR88].

23

Figure 12: Hardware Configuration

24

3.4.2 Database Management

We plan to use Ingres [HEL75] as the database management system for formatted text since

it is the most widely available public domain relational database system in Unix. A relational

database schema for handling multimedia objects is under development, which allows query

support and object integration for multimedia objects. In our system development, the effect

of changing the underlying database management system will be minimized so that various

database management constructs can be exploited. We also plan to develop a high speed

file access method based on surrogate files [BER87] for multimedia applications.

3.4.3 Image Management

For color image generation, we use the color scanner. This scanner uses a software tool

called GBA Scanin [GBA89] in order to digitize images. This tool also allows enhancement

of the quality of scanned images. The images created by the scanner can be used for the

NeWS/PNeWS environment as well as the SunView environment. For image manipulation,

our system uses Artisan [MED88], which allows creating and editing documents containing

text, images, and drawn objects. Artisan supports various image formats including Artisan,

TIFF, Targa, and SunRaster. Artisan also generates color PostScript files for high quality

output.

3.5 An Application for the Multimedia Server

For the proposed centralized server, we are developing a multimedia application related

to weather information. Currently, we are receiving visible and infrared satellite weather

images. Visible images indicate cloud formations, whereas infrared images indicate cloud

temperatures. The size of a satellite image is about 1.5 Mbytes (= 1400×1064×8bits). Each

image contains a header portion indicating time, date, sector number (one of approximately

ten sectors), and an intensity bar to identify image contents. The system also receives radar

precipitation images over direct telephone line from the local power corporation (Niagara

Mohawk Power Corporation). A typical radar image is of the size 128 Kbytes (= 512 ×

512 × 4bits). In addition, various lightning images are also received, with a typical image

also of size 128 Kbytes. The purpose of the use of these images and related information, is

to develop various multimedia functions for weather applications. These include animation

at various rates of sequences of related images, composition of various regional areas for

25

panning and zooming, and composing video clips of a local weather channel with the textual

information.

4 Heterogeneous Distributed Multimedia Systems

For the distributed multimedia application domain it is expected that in the future data

objects will be scattered across a network and will possess differing access requirements as

dictated by commercial applications. Database servers will exist as components of these

environments with varying performance characteristics and data formats, complicating the

data integration process.

For a proposed heterogeneous distributed multimedia system we desire integration of

data objects for ultimate presentation to the user, satisfying original presentation intent.

Unlike the preceding centralized system, the choice for data integration must be determined

from within the set of processors of the distributed multimedia system. For the centralized

case, all composition and synchronization is performed within the capability (processing) of

the workstation or centralized server. The alternate, distributed, scheme is to let a set of

distributed database servers provide some degree of composition prior to communication of

the multimedia objects [LIT89]. These two scenarios are indicated in Figure 13. Of course,

the coordination of the composition process depends greatly upon the decomposition and

distribution of the contents of the multimedia database. Suppose two objects are to be

integrated into a single object for transmission to the user. If the two objects are stored

by the identical database server then the selection of the appropriate composition node is

obvious. However, if the data are stored on different servers, some mechanism must determine

the appropriate optimal node to perform the composition.

Two other alternatives are apparent. First, each database server could maintain individual

databases for each data type. Second, an intermediate composition processor/node could be

assigned to coordinate the composition process for an object requiring data from a set of

database servers. In the first case, we preserve performance of individual data type databases

but maintain heterogeneity in the distribution of data which is good for reliability, security,

and local access to data. In the second case, a single intermediate processor queries the

necessary database servers for data required to build the desired object. Compared to the

previous scenarios, an additional communication overhead is incurred with this scheme since

no data is stored local to the intermediate processor. However, homogeneity in data of

database servers is maintained, and no server composition bottleneck results as before.

26

Figure 13: Centralized vs. Distributed Data Composition [LIT89]

27

4.1 Heterogeneous Processing

Heterogeneity in data formats is a problem between different software environments as well

as between machine types. The object-oriented paradigm offers the ability to hide machine

dependencies and hardware characteristics from the system developer thus minimizing dependencies

that affect the entire software system. Between machines with different concepts of data

representations, canonical representations are used to minimize the number of translators

required between data formats. XDR (eXternal Data Representation) [SUN88], is an example

of such a canonical data scheme. If a canonical representation is utilized, it may be embedded

in a class’ methods, hidden from the application designer.

4.2 Communication Requirements for the HMD System

The integration of all multimedia services within a single broadband network poses new

communication requirements for switching, multiplexing, transmission, control and processing

of voice, audio and video signals. For example, full-motion video services using high definition

television (HDTV) requires 1.2 Gbits/sec bandwidth. However, this rate can be reduced to

200-300 Mbits/sec using compression techniques [LIN86]. Services providing a broad range

of still picture communication (images, graphs, maps, charts, etc.), depending on the picture

resolution and color levels, can require transmission capability ranging from 50 kbits/sec to

48 Mbits/sec. The audio data rate can vary from 4 kbits/sec to 20 kbits/sec. Text data may

be transmitted at considerably lower rates.

4.2.1 Full-Motion Video Communication Requirements

In order to support these diverse services, we use both circuit and packet switching. Since full-

motion video services require real time communication with very low network delay, circuit

switching is the most suitable mode, since it guarantees constant stability of transmission

delay in communications and 100 percent availability of communications on given channels.

The channel for such a service will be assigned between a user and the server, by the HMD

controller. The overall bandwidth of the channel must be large enough to support the rest

of the low data rate services (audio, text, images etc.) integrated with the full-motion video

traffic. Since, there may be multiple sessions concurrently active in the network requiring

such a service, it is essential that channel assignment be carried out intelligently in order to

avoid inter-channel interference

28

4.2.2 Services with Low Broadband Communication Requirements

Services requiring still images, graphics and maps etc., require varying transmission rates

depending upon the resolution of the picture and the number of colors. For example, a 320×

200 low resolution picture with 256 colors requires about 0.5 Mbits/picture. The transmission

rate of 50 kbits/sec will transfer 0.1 picture/sec. On the other hand, a transmission rate of 48

Mbits/sec can deliver 2 pictures/sec each having a 1000× 1000 resolution. Since there is no

motion present, network delay may not be a serious consideration. For these services, high

speed packet switching techniques can be employed, which can also be employed for audio

traffic. However, care must be taken on the delivery of voice packets since this type of traffic

also has some network delay requirements for real-time delivery. It is worth noting that in

order to provide a reliable delivery mechanism, virtual circuit communication is essential for

the services mentioned above which use packet switching.

4.2.3 Services with Narrowband Communication Requirements

For services requiring narrowband communication such as structured text and formatted

data, packet switching techniques can be used. Similarly, all the control as well as protocol

signals between users, the controller and servers can be transmitted using packet switching.

Virtual circuit communication can be employed to provide reliable and error free transmission.

Most of the control packets can be transmitted as datagrams, using a special control channel

designated for this purpose in the network.

4.3 Proposed HMD Architecture

The global architecture for the proposed HMD system is shown in Figure 14. Generally,

the HMD system consists of n servers (i.e., S1, S2, ..., Sn), m users (i.e., U1, U2, ...Um),

a communication network, and a central controller. Both n and m are dynamic and can

be changed easily according to the actual needs in the application environments and m >>

n. To simplify the discussion, for the time being, a symmetrical architecture is assumed,

that is, all the servers are the same in their hardware and architectural design. Besides,

heterogeneous objects can be represented in the system in order to significantly increase the

accessibility. In other words, if a desired server is busy, an incoming query can go to another

server to access the same desired object. Although the major concern becomes maintaining

the load balancing among servers, difficulties occur in maintaining object consistency and

29

Figure 14: A Distributed Multimedia Database System

allowing a low-level object to be shared by several high-level objects. We now describe

architecture of various components of the HMD system.

4.3.1 User Workstation

The main function of a workstation is to display multiple data to the user in the desired

format. For example, if the video data is in digital form, it needs to be converted into analog

form for display. Similarly the image data can be in many possible forms. Accordingly,

processing needs to be carried out before the data can be displayed. It is therefore, essential

that this component be a smart terminal with significant processing and storing capabilities.

Furthermore, it should be able to interface with the communication network and support

communication protocols in order to interact with the central controller and multimedia

servers.

30

4.3.2 Communication Network

The main function of the network is to interconnect geographically dispersed servers and

users and provide communication support for the services we mentioned above. Therefore,

the use of optical Metropolitan Area Network (MAN) technology is the most feasible solution

for such a high speed data communication requirement. Since a server in the HMD system

can be a multiprocessor system, multiple ports can be made available for networking or a

cluster of databases interconnected through a Local Area Network (LAN). A MAN can

effectively serve as the backbone network interconnecting all these sites. A number of

organizations such as the CCITT, the IEEE and the ISO are in the process of defining

standards for networks, protocols and interfaces in order to support Broadband Integrated

Services (BIS). The widely supported broadband integrated services digital network (B-

ISDN) for MAN technology is the dual bus Queued Packet and Synchronous Switch (QPSX)

[NEW88]. QPSX MAN has many features such as high reliability and support for arbitrary

network size and speed. Therefore, such a network can be employed effectively in the

proposed HMD system. In order to provide real-time interactive multimedia services, B-

ISDN should have a low delay and a high data transfer rate on the order of Gbits/sec. With

the current state-of-the-art in optical fiber technology, networks with capacities approaching

2-5 Gbits/sec using wavelength-division multiplexing have been reported. We, therefore,

envision that the network used for the HMD system will be capable of providing such a high

data rate.

An efficient use of the network and common channels is critically dependent upon the

Media Access Protocol (MAP) and the interface mechanism to the network. The interface

between a server and the network must permit reasonably high data rates to avoid congestion

of data. Furthermore, it is desirable that standard interfaces which operate in the asynchronous

mode be used so that the software changes to the server’s operating system are minimal. A

number of standards for MAP have emerged recently for high speed optical networks such

as IEEE 802.3 (CSMA/CD), IEEE 802.4 for broadband services [IEE85] and CCITT’s I-400

series [GIF86]. Any one of these standards can very well be adopted for the proposed HMD

system.

4.3.3 Controller for Distributed Objects

The distributed functions such as object management, server allocation, etc. can be carried

out by a central controller as shown in Figure 14. A user’s request carrying the necessary

31

parameters for the services to be provided, is first received by the controller. The controller

interprets the query in order to identify servers which have the desired objects and then

establishes a binding between the user and the associated servers. The controller determines

in which server a specific object is stored (or servers in case the object is distributed and

stored over multiple servers). It then selects the most suitable server which we will refer to

as the master server in case a multi-server object is requested. The rest of the participating

servers will be referred to as secondary servers. Such an identification is directly related to

the type and nature of databases available at various sites. The decision for selecting the

master server is based on the current load on the servers and the cost of data movement

among servers. The major factor for the decision is the latter one since it severely affects

the overall query response time as well as the amount of data traffic in the network. It then

determines the procedure for the operations on an object which requires multi-server access.

Additional functions carried out by the controller include prioritizing queries, detecting

possible temporary constraints in performing object integration at the global level, interpretation

of the function of each query at a high level and finally, guiding the object communication of

all the participating servers. The controller also needs to support communication protocols in

order to have reliable communication between itself and the users as well as with the servers.

Discussion of the communication protocols is given in a subsequent section. The controller

is also responsible for all the network management functions such as server initialization,

authentication, logging the generation of new databases and multimedia objects, assignment

of network channels for supporting concurrent sessions, etc. The architecture of the controller

can be a uniprocessor having sufficient memory.

4.3.4 Multimedia Distributed Server

The node of a multimedia server for a distributed environment is essentially the same as

the centralized server with some additional functional requirements. For example, once a

server is selected as a master server for a user, it becomes responsible for the integration

of the databases (both local and external). Secondary servers are notified by the central

controller to allow access to their databases, which serve as external databases to the master

server. Upon this notification, the master server establishes sessions with the secondary

servers in order to maintain an interactive environment and to fulfill the user’s request

regarding manipulation of the external databases. The master server upon establishing the

connection starts receiving external data and integrates it with its own local data according

to the semantic representation of the multimedia object. The relationship between various

32

data entities may be temporal and thus time ordering needs to be maintained if browsing

through databases is requested by the user. It should be noted that the server must have

large memory in order to hold external data while integrating it with the local data. Also,

large memory will allow browsing through external data without incurring retransmission of

that data from the secondary servers.

Another additional requirement for a server in a distributed system is its ability of

networking, that is, it needs to support a peer-to-peer communication mechanism. This

mechanism can be supported by a hierarchy of communication protocols, for which there

exist many commercial and international standards. These include ISO reference model

[TAN81], CCITT’s X- series, and SNA by IBM etc. These protocols provide both virtual

circuit as well as datagram services needed for the proposed HMD system. These can also

support the application services needed between the user and the server. The main function

of the protocol hierarchy is to provide a reliable error-free communication mechanism between

two remotely located entities. The interaction between a user is mainly on the basis of a

virtual circuit while the transmission of integrated data needs circuit switching, as described

in a previous section. The interaction between the controller and the other servers is also

supported through the use of these protocols.

To obtain proper synchronization (speed matching) between the network and the server

and to avoid congestion of data at the network interface point, the server needs to have

multiple network ports. For a smooth flow of data between the server and the network

ports, efficient interface protocols also need to be implemented by the server.

In order to perform proper load balancing and make effective use of local resources the

architecture of the server is assumed to be partitionable into sets of clusters (see Figure

15). The basic philosophy of the partitioning of the architecture into clusters is that a

partitioned cluster can be assigned to those users who require more or less the same type of

external and local data. The major advantage of this scheme is that various external data

stored temporarily in the local memory of a cluster can be effectively integrated to serve

multiple users, without incurring repeated transmission of the same data from secondary

servers. Clearly, the performance can be greatly enhanced through the proposed scheme.

The resulting architecture to support these functions is hybrid in nature with the following

properties:

• The controller consists of multiple processors and has a large global memory which is

partitionable and shared among all the processors.

33

• A high speed interconnection network is present between the processors and the main

memory modules.

• There is another high speed interconnection network between the database machines

and the main memory modules. This network is also used to provide multiple ports to

the optical network.

• Memory management, partitioning of the system, assignment of resources, and the

network interface is under the control of the server’s operating system.

4.4 Multimedia Access and Retrieval

4.4.1 Object Graph

To perform global operations, we need to define the internal data representations and their

memory storage policy. Two-level object graphs are maintained in the system, i.e., local and

central, where a local object graph is maintained by the local controller of each server and

a central object graph is maintained in the central controller. Consider the example shown

in Figure 16, where, for the reason of simplicity, a two-server system is assumed and each

server is assumed to have four memory modules, i.e., MM1i and MM2i (i = 1 . . . 4). In

order to clearly present our global architecture, we will describe each information token at

the abstract object level. As an example, object O8 consists of objects O1 and O2 (or partial

O1 and O2), O1 is stored in MM11 and O2 is stored in MM12 of Server 1. Similarly, O15

is stored in MM21 and MM24 of Server 2. Note that O22 and O23 are stored partially in

Server 1 and partially in Server 2. The term multiple server object is used for them.

First, the term local graph for server i is used to represent a subgraph of the object graph,

where each object in this subgraph is stored in Server i. Examples of local graphs are shown

in Figure 16 by dashed boxes. Note that if we store the entire object graph in the central

controller and perform the search of each object in it, the speed of the central controller will

be very slow and could easily become the bottleneck of the whole system. Thus, the entire

object graph is partitioned into many local object graphs and one central graph. And, at

the same time, the required manipulations on the object graphs are then distributed into

local servers. Therefore, it is clear that we need to have a local controller for each server to

be in charge of the operations on the corresponding local graph.

A central object graph consists of all the multiple server objects and non-descendent

34

Figure 15: Architecture of a Server

35

Figure 16: Object Graph

36

Figure 17: Central Object Graph

objects in all local object graphs and the corresponding server(s) for each object. For

example, the central object graph for the example in Figure 16 is shown in Figure 17,

where descendent objects such O1, O2, . . . , O7 are not included in the central object graph

and non-descendent objects in local object graphs such as O19, O20, and O21 are included.

Note that although O19 is a descendent of O23 (which is a multiple server object), it is still

a non-descendent object in the local graph of Server 2. Each object in the central object

graph is at the highest-level in the database system. For example, a system may classify

all the information into education, medical, entertainment, transportation, etc., and each of

them will an object in the central object graph. It is clear that, in the central object graph,

only single level objects are used. Thus, only a simple linear time search is required.

4.4.2 Global Object Manipulation

With local and global object graphs, a user’s query can be manipulated in the following way.

It is reasonable to require a user to understand in which category (i.e., in which object of the

central object graph) a desired object has been classified. If we use the example mentioned

above, a user needs to know whether the desired object is related to education, medical,

entertainment, etc. Therefore, it is realistic to assume that a user can access the central

object graph from the I/O device. Thus, to access an object Ol in the database, the user

needs to specify:(Oc: Ol), where Oc is the ancestor of Ol and is in the central object graph. A

typical user query is as follows: (f (Oc1 : Ol1) (Oc2 : Ol2) . . .) where f is the function of this

query. The user simply places the desired object name in the network, the central controller

searchs for Oc in the central object graph and then forwards the query to the corresponding

server. For a multiple server query, a distributed object integration policy is required. That

is, the central controller would select one of the related servers to be the master server

37

and others secondary servers, such that objects from secondary servers are transferred to

the master server through the global network and integrated into a global object requested

by user. The criteria for the central controller to select a master server has already been

addressed. It is clear that if required object is a video signal, then the server containing

this object is very likely to be selected as the master server. Note that, because all the

servers are remote to the central controller, it will not be efficient to directly perform object

integration in the central controller. When new objects are to be stored in the database,

existing objects are to be modified, or the structural connections of some existing objects

are to be changed, the local object graphs and possibly also the global object graphs need

to be updated. Note that to guarantee object consistency, each object in the central object

graph requires the functions of “lock” and “unlock”. For example, consider the case where

an existing object (Oc: Ol) is to be updated. First, the query containing this object will be

processed by the central controller which will first check the function of this query, forward

this query to servers, and then immediately lock Oc. As soon as the update operation is

finished, the local controller sends a control signal to the central controller to unlock Oc and,

at the same time, sends an acknowledgement signal to the user. Of course, it is also possible

to distribute the functions of “lock” and “unlock” to local controllers. However, it would

complicate the process of a multiple server object.

4.4.3 Local Object Manipulation

Once a user’s query has been transferred to a server, search is performed to locate the

object in the local object graph; then decomposition (toward the direction of leaves in the

local object graph) starts by traversing the local object graph until reaching the DBMSs.

For example, suppose a query needs to access O11 in Figure 16. Search for this object is

performed on the local object graph, then O11 is decomposed into (O5, O6, O7) which is then

decomposed into ((MM12, MM13), MM11, MM14). Next, the subobjects from MM11,

MM12, MM13 and MM14 are fetched into the local controller and integrated into a single

user object. Inside a server, because all the DBMSs are local to the local controller, object

integration can simply be performed in the local controller. In other words, the approach of

using master and secondary server is no longer necessary here.

Because there will be many queries occurring simultaneously in a server and some of

them may have predefined temporal ordering, it is necessary to attach a time variable to

each object in a query to guarantee that when a user receives the response the order is

correct. This will require intelligent object integration inside a local controller. Note that,

38

in order to reduce the load of the central controller, most of the temporary synchronization

operations are performed in the local controllers. A data flow approach can be used for

object integration. Each object at any abstraction level is represented by a template. Once

all the required parameters are available, the output object (integrated object) is forwarded

to the template of its father node. This operation continues until it becomes the object

which the user requested. Therefore, it is very important to set up a data flow graph for

each object. Since the recursion problem occurring in traditional computing problems does

not occur in this case, the analysis will not be as complex as in a data flow computer.

5 Conclusions

In this paper, we have presented a set of functional requirements for a multimedia server.

These requirements have been partitioned into multimedia database management, object

synchronization and integration, and multimedia query processing for object manipulation.

Accordingly, we proposed a three layer architecture for a centralized server which is currently

being prototyped. At the database level there are a myriad of interesting research problems

that must be addressed. Foremost among these are storage, access, updating and integrity

of various types of image and video data. Data synchronization and integration is a critical

problem for object composition for which we have developed a Petri net model. This model

is part of the overall multilevel object oriented approach taken to ensure uniform continuity

from the user level down to the database system level. The centralized model provides

a framework for the consideration of a distributed multimedia architecture which we also

discuss in the paper. We conclude that the issues involved in the development of distributed

multimedia information systems are more challenging than those of the centralized model

and extensive research will be required.

References

[AST76] M. M. Astrahan et al., “System R: Relational Approach to Database Management”,

ACM Trans. Database Systems, vol. 1, no. 6, June 1976.

[BAN87] J.H. Banerjee et al., “Data Model Issues for Object-oriented Applications,” Trans.

Office Information System, pp. 3 - 26, January 1987.

[BEL88] “FIVE User’s Manual,” BELLCORE, Morristown, NJ., 1988

39

[BER79] P. B. Berra and E. Oliver, “The Role of Associative Array Processors in Database

Machine Architecture,” IEEE Computer, vol. 12, no. 3, pp. 53-61, March 1979.

[BER87] P.B. Berra, S.M. Chung, and N.I. Hachem, “Computer Architecture for a Surrogate

File to a Very Large Data Knowledge Base”, IEEE Computer, vol. 20, no. 3, pp.

25 - 32, March 1987.

[BER89] P.B. Berra et al., “The Impact of Optics on Data and Knowledge Base Systems,”

IEEE Trans. Knowledge and Data Engineering, vol. 1, no. 1, pp. 111-132, March

1989.

[BLC88] “The Intelligent Database Machine”, Product Literature, Britton Lee Corp., Los

Gatos, CA, 1988.

[BOW88] N.Bowen, C. Nikolaou and A. Ghafoor, “Hierarchical WorkLoad Allocation for

Distributed Systems,” Proc. 17-th Int. Conf. on Parallel Processing System, St.

Charles, Illinois, August 1988.

[CHO84] M. Chock, A.F. Cardenes, and A. Klinger, “Database Structure and Manipulation

Capabilities of the Picture Database Mangement System (PICDMS),” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. PAMI-6, no. 4, pp. 484-492, July

1984.

[CHR86] S. Christodoulakis and C. Faloutsos, “Design and Performance Considerations for

an Optical Disk-Based, Multimedia Object Server,” IEEE Computer, vol. 19, no.

12, pp. 45-56, December 1986.

[COO83] J. E. Coolahan Jr. and N. Roussopoulos, “Timing Requirements for Time-Driven

Systems Using Augmented Petri Nets,” IEEE Trans. Software Engineering, vol.

SE-9, no. 5, pp. 603 - 616, September 1983.

[COP85] G. P. Copeland and S. N. Khoshafian, “A Decomposition Storage Model,” Proc.

SIGMOD ’85, pp. 268-279, 1985.

[DAV86] E. Davidson, D. Kuck, D. Lawrie, and A. Sameh, “Supercomputing Tradeoffs and

the CEDAR System,” CSRD Rep. No. 577, University of Illinois, Urbana, May

1986.

[ELS87] “Directory of Online Databases 8(1),” Caudra/Elsevier, New York, January 1987.

[GBA89] “GBA-Scanin: Installation and User Guide,” GBA, 1989.

40

[GHA88] A. Ghafoor and F. Y. Farhat, “Dynamic Concurrency Control Algorithms for Large

Distributed Database Systems,” To appear in The Computer Journal, Cambridge

University Press.

[GIF86] W.S. Gifford, “ISDN User-Network Interfaces,” IEEE J. Selected Areas of

Communications, vol. SAC-4, pp. 343 - 348, July 1986.

[GUY81] A. C. Guyton, “Text Book for Medical Physiology,” W. B. Saunders Co.,

Philadelphia, 1981.

[HEL75] G. Held, M. Stonebraker and E. Wong, “INGRES - A Relational Database System”,

Proc. 1975 NCC, Anaheim, Ca., June 1975.

[IEE85] ANSI-IEEE Standard ISO Draft International Standard, Std 802.3-1985, Carrier

Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and

Physical Layer Specifications, 1985.

[IRV88] J.H. Irven et al., “Multi-Media Information Services: A Laboratory Study,” IEEE

Communication Magazine, vol. 26, no. 6, pp. 27 - 44, June 1988.

[JUN85] E. Jungert et al., “Vega - A Geographical Information System,” Proc. Scandinavian

Res. Conf. Geographical Information Systems, Linkoping, Sweden, June 1985.

[KHO88] S. Khoshafian, P. Valduriez, and G. Copeland, “Parallel Query Processing for

Complex Objects,” Proc. 4th Data Engineering Conference, pp. 202 - 209, February

1988.

[KIM86] M. Y. Kim, “Synchronized Disk Interleaving,” IEEE Trans. Computers, vol. C-35,

no. 11, pp. 978-988, November 1986.

[KIM88] J. Kimsey, “Museum Cataloging,” Computer Graphics World, May 1988.

[KOS87] K. Kosaka et al. “An Experimental Mixed-Object Database System”, Proc. IEEE

Computer Society Office Automation Symposium, Gailthersburg, MD, pp. 57 - 66,

April 1987.

[LIN86] L. Linnell, “A Wideband Local Access System Using Emerging Technology

Components,” IEEE J. Selected Areas of Communications, vol. SAC-4, July 1986.

[LIN89] M. A. Linton, J. M. Vlissides, and P. R. Calder, “Composing User Interfaces with

InterViews,” IEEE Computer, vol. 22, no. 2, pp. 8 - 22, February 1989.

41

[LIP80] A. Lippman, “Movie-Maps: An Application of the Optical Videodisc to Computer

Graphics,” Computer Graphics, pp. 32-42, July 1980.

[LIT89] T. D. C. Little and A. Ghafoor, “Multimedia Object Composition in a Distributed

Environment,” to be submitted to IEEE Trans. Parallel and Distributed Systems,

1989.

[LIT90] T. D. C. Little and A. Ghafoor, “Multimedia Object Models for Synchronization

and Databases,” to be published in Proc. 6th Data Engineering Conference, Los

Angeles, CA, February 1990.

[MED88] “Artisan User’s Guide,” Media Logic Inc., 1988.

[NAF86] N. Naffah and A. Karmouch, “Agora - An Experiment in Multimedia Message

Systems,” IEEE Computer, vol. 19, no. 5, pp. 56-67, May 1986.

[NEW88] R.M. Newman, Z. L. Budrikis and J.L. Hullett, “The QPSX Man,” IEEE

Communication Magazine, vol. 26, no. 4, pp. 20-28, April 1988.

[PAR88] “Parallax Graphics 1280 Series Processor Manual,” Parallax Graphics, September

1988.

[PET77] J. L. Peterson, “Petri Nets,” Computing Surveys, vol. 9, no. 3, pp. 225-252,

September 1977.

[RUB87] W. B. Ruberstein, “A Database Design for Musical Information,” Proc. ’87

SIGMOD, December 1987.

[ROU85] N. Roussopoulos and D. Leifker, “Direct Spatial Search on Pictorial Database

Using Packed R-trees,” Proc. ’85 SIGMOD, pp. 17-31, May 1985.

[SAM84] H. Samet, “The Quadtree and Related Data Structures,” Computing Surveys, vol.

16, no. 2, pp. 187-260, June 1984.

[SCH85] B.R. Schatz, “Telesophy,” Bell Communications Research TM-ARH-002487,

August 1985.

[SUN87] “NeWS Manual,” Sun Micro Systems Inc. Part No. 800-1632-10, March 1987.

[SUN88] “Network Programming,” Sun Micro Systems Inc. Part No. 800-1779-10, February

1988.

[TAN81] A.S. Tanenbaum, Computer Networks, Prentice Hall, 1981.

42

[TER88] “DBC 1012,” Product Literature, Teradata Corp., Los Angeles, CA., 1988.

[THI87] “Connection Machines Model CM-2 Technical Summary,” Thinking Machines Co.

Technical Report HA87-4, April 1987.

[THO85] R.H. Thomas et al., “Diamond: A Multimedia Message System Built on a

Distributed Architecture,” IEEE Computer, vol. 18, no. 12, pp. 65- 78, December

1985.

[WOE87] D. Woelk, W. Luther, and W. Kim, “Multimedia Approach and Database

Requirements,” Proc. Int. Conf. on Office Automation, 1987.

[YAN88] N. Yankelovich, et al., “Intermedia: The Concept and the Construction of a

Seamless Information Environment,” IEEE Computer, vol. 21, no. 1, pp. 81-96,

January 1988.

43

