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Abstract–In this paper we describe the Virtual Video Browser (VVB) software application

designed to allow the interactive browsing and content-based query of a video database

and to facilitate the subsequent playout of selected titles. The VVB is a manifestation

of our mechanisms for the location, identification, and delivery of digital audio and video

in a distributed system which can be extended to several application domains including

multimedia-based home entertainment, catalog shopping, and distance learning.

The VVB employs a two phase retrieval process to serve its users. In the query phase,

user queries are sent to a metadata server for processing. In the subsequent playout phase, a

connection is established between the client workstation and a video server for the delivery

of video data. The VVB incorporates a simple query interface that lets users specify their

preferences to the system and retrieve the appropriate video. The application is designed to

work in a distributed environment where video sequences are stored in different databases

interconnected via a network. It has been shown to be a viable target application useful for

investigating research problems related to building interactive multimedia systems.
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1 Introduction

Multimedia computer applications are becoming one of the most dominant areas of devel-

opment in the computer and information delivery arenas. One manifestation of this view is

the development of systems supporting video-on-demand (VOD) [15, 25]. In a VOD system,

video data are provided to a user community on a personalized basis. The home entertain-

ment arena represents only a modest subset of the many possible interactive multimedia

applications. Services including games, movies, home shopping, banking, health care, elec-

tronic newspapers/magazines, and classified advertisements represent some of the plethora

of applications that can take advantage of the new technology.

In this context, we envision a VOD system2 that allows the viewing preferences of each

individual to be tailored and adapted to the available programming. Such a system would

filter both stored and “live” information and offer these selections to the viewer instead

of the many possible choices. Other features would permit more fine-grained information

filtering. For example, specific topics of interest might be identified within a set of newscasts

or documentaries. The realization of this vision requires identifying, and solving a diverse

set of problems:

• A VOD system must possess the ability to capture and index large data sets for sub-

sequent browsing and retrieval.

• Providing interesting, useful, and diverse means of accessing multimedia information

from a very large realm of data necessitates mechanisms that allow searching for specific

items in unstructured data.

• A VOD system must provide mechanisms to access enormous amounts of information,

especially as derived from video data. This necessitates the development of techniques

for efficient storage and retrieval.

• Construction and management of a high degree of interconnectivity and communication

bandwidth among the different components of the VOD system.

Fig. 1 illustrates one view of a VOD system specific to the distribution of home enter-

tainment [17]. This model consists of a local database connected via a high speed backbone

2In the remainder of this paper, we use VOD to describe any interactive multimedia system that encom-
passes video delivery.
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network to archives that store multimedia information [11]. The local databases cache in-

formation locally (on a very large scale) and make them available to their users on-demand

[29].
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Figure 1: A Distributed Database Scenario for VOD

The advantage of this system architecture is its scalability. It is impractical to expect a

single site to store all data and provide interactive services to thousands of users. This is be-

cause the support of a single VOD session3 requires substantial storage and communication

bandwidth [1, 26]. Local storage on the end user’s computer is usually not feasible due to

the cost. Moreover, the distribution of data and use of multiple access points increases the

system’s overall I/O capacity to support interactive sessions. In addition to the database

systems that allow users to access information, there is a need to build a communication

infrastructure that interconnects the different system components. The communication sys-

tem must transfer large amounts of data in real time and provide guarantees on the delivery

Quality-of-Service (QOS). This requires designing efficient algorithms to manage the flow of

data within the network.

To access the large information space and support complex queries, it is essential to build

schemes that model the content of unstructured data types such as audio and video [27].

These schemes must capture timing information necessary to support audio and video data

delivery, playout, and queries based on temporal ordering. Research related to this effort

includes modeling unstructured data for content-based retrieval [24, 35, 36, 37, 38], modeling

the temporal component of multimedia data [12, 19], and the modeling of application-specific

multimedia data [9, 22, 23, 28, 30, 31]. Approaches that tailor the output to the user are

discussed by Lippman and Bender [14], Bender et al. [3], and by Loeb [22, 23].

3A session is described as a single, truly interactive connection from the system to the user.

3



Our objective in this work has been to demonstrate the utility of our models for time-

dependent multimedia data [19] in constructing a VOD system. In this process we have

sought to develop interesting access approaches for the retrieval of video information. The

Virtual Video Browser (VVB) represents a testbed application designed to help us under-

stand the end-to-end workings of a VOD system. Similar experimental testbeds and deploy-

ments of VOD are described by Rowe and Smith [28], Federighi and Rowe [10], Loeb et al.

[23] and Keller and Effelsberg [13].

To achieve the aforementioned objectives, the VVB application characterizes motion

video and its attributes to the level of scenes by using a data-specific schema. This infor-

mation is stored in a relational database for subsequent interactive retrieval. Content-based

retrieval is achieved using a domain-specific model used to characterize the specific video

type (newscast, classroom, or movie). This database functionality is built on top of a meta-

data system model that supports location, identification, and delivery of multimedia data.

This system is modeled on the client-server architecture in which a server coordinates dif-

ferent client requests. The VVB can support temporal access control operations based on

data structures describing digital movies, classroom lectures, and newscasts and uses several

tools that aid in the capture and indexing of video for content.

The remainder of the paper is organized as follows. In Section 2 we discuss the issues

involved in building video databases and describe the basis for the construction of the VVB

prototype. In Section 3 we describe the operation of the VVB and its implementation

details. In Section 4 we discuss the lessons learned during the construction of the prototype

and future directions. Section 5 concludes the paper.

2 VOD Databases

The support of interactive services requires the provision of mechanisms that support loca-

tion, retrieval, and user temporal-access-control (TAC) functions. A VOD database server

must also support time-dependent data delivery to many individuals over long-lived connec-

tions. To support complex user queries and browsing, the multimedia information system

must first model, then store data in structures suitable for data playout. It must also provide

retrieval mechanisms that deliver multimedia data-types to the consumer in real-time.

In this section we describe domain-specific conceptual models for video data and consider

temporal and physical models for supporting the retrieval of time-dependent audio and
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video data in content-based access. We then discuss issues of database management and

implementation from the perspective of an end-to-end system.

2.1 Domain Specific Modeling of Video Data

Prior to the construction of any database application, one needs appropriate information

models characteristic of the application domain. For a video browser application, the required

models are application-related and media-related. Here we focus on the media-related models

for video data. Application-related information models for the movie database are described

in Section 3.

A video stream is typically modeled as a finite-length sequence of synchronized audio

and still images.4 These segments, if recorded contiguously in time, are called shots [9].

To provide useful access functionality, shots can be associated with information content.

In addition, context can also be associated with shots based on relationships among video

components. Embedding information about the content and context into the information

models allows users to subsequently query for content and receive desired information.

To this basic shot component, attributes such as content, perspective, and context can be

assigned, and later used to formulate a specific view on a collection of video. Aguierre Smith

and Davenport [30, 31] use a technique dubbed stratification for aggregating collections

of shots by contextual descriptions called strata. These strata provide access to frames

over a temporal span rather than to individual frames or shot endpoints. This approach

is applicable to classroom video recordings in which a query extracts a collection of shots

associated with a particular topic of interest. However, it remains a time-consuming process

to identify and assign context and content to the video components.

2.2 Information Extraction from Unstructured Data

In a conventional DBMS (e.g., using a relational model), access to data depends on distinct

attributes for well-defined data developed for a specific application. For unstructured data

such as audio, video, or graphics, similar attributes can be defined. However, the information

contained in the data can be diverse and difficult to characterize within a single application

[38].

4This characterization is a trivial instance of a timing relationship between media from the much larger
set of relations possible among general multimedia objects.
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The problem of extracting content and context from unstructured data can be approached

by segmentation and feature extraction [2, 32]. Content of unstructured data such as imagery

or sound is easily identified by human observation; however, few attributes lead to machine

identification. For still and moving images, it is possible to apply segmentation to yield

features such as shape, texture, color, relationships among objects, and events [4]. This

process is very difficult to apply to complex scenes; however, it can be simplified with site

models which characterize images a priori and allow detection of scene changes.

In our prototype system we currently use manual feature extraction of well-defined at-

tributes which fit into a fixed data schema. The process of scene identification is semi-

automated by detection of scene transitions [6]. A similar approach has been applied by

Swanberg et al. [36, 37] and MacNeil [24]. In the former work, application domain-specific

models are used to capture extracted information and to support content-based retrieval.

In Steven’s work in the ALT project at CMU [35], knowledge of content, structure, and use

of the content is embedded in video objects. This approach is applied to the generation

of video sequences using a rule-base and leads to the selection of seamless concatenation of

video sequences from many small video shots.

2.3 Time-Dependent Data Support for Audio and Video

In addition to inter-media timing between audio and video in the aforementioned shots, there

is a requirement to manage the timing among collections of shots (e.g., as scenes). These

relationships can be sequential, as in the conventional video delivery model; parallel, with

multiple concurrent playout; or arbitrarily complex combinations of the former. Moreover,

the relationships can be conditional as indicated by a user’s preferences and as explored

via browsing. Both concurrency and and alternate sequence selection (browsing) are repre-

sentable using the timed Petri net (TPN) and the hypertext paradigm [21, 34]. We illustrate

an example in Fig. 2. In this example a collection of scenes is represented as places in the

Petri net model. At the end of each scene, via user selection, a limited set of subsequent

scenes can be viewed. Timing within the scenes can be managed by using an independent

representation.

Few representation techniques specify appropriate data structures that support subse-

quent TAC operations on a database schema. Our approach is to use a mapping from a

specification methodology to a database schema using the timed Petri net (TPN) and the

relational database model [19, 21]. In this case, temporal intervals and relationships are de-
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Figure 2: TPN for Representing Relationships Among Scenes of a Motion Picture

scribed by a timeline representation in an unstructured format, or by a TPN in a structured

format. Using a TPN, temporal hierarchy can be imparted to the conceptual schema as sets

of intervals bound to a single temporal relation. For a model as simple as a movie consisting

of a sequence of scenes, we can directly create the conceptual temporal schema (Fig. 3). In

a more general multimedia application this representation can be quite complex.

scenescene

audio video

scene scenescene

movie

shot shot

Figure 3: Temporal Schema for a Motion Picture

With this approach, the time-based representation is translated to a conceptual schema as

a temporal hierarchy representing the semantics of the original specification approach. Leaf

elements in this model typically represent base multimedia objects (audio, video, text, etc.),

but are only audio and video (and subtitles) for the VOD application. Timing information

is also captured with node attributes, allowing the assembly of component elements during

playout. Most proposed models for multimedia data employ similar temporal-interval-based

(TIB) representations (e.g., [8, 12]), including our model [19, 21].

Temporal intervals can be used to model multimedia presentation by letting each interval
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represent the presentation or playout duration of some multimedia data element, such as a

still image or an audio segment. The specification of timing for a set of intervals is achieved

by indicating element durations for each data element and relative timing among elements.
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Figure 4: Blocking for Continuous Media

This TIB modeling scheme can represent an arbitrary grain of interval (e.g., individual

video frames or entire movies). However, the practicality of representing each frame by

its temporal parameters is limited for audio and video data. Therefore, we group logically

related frames into sets called shots, that are not normally decomposed. This aggregation

corresponds to Fig. 3, and yields a blocking of sequences of continuous media as shown in

Fig. 4. Within a block, data are assumed to have a homogeneous temporal characteristic

(i.e., period of playout).

2.4 Physical Data Storage

A mapping of the multimedia data to the physical storage system is necessary to facilitate

subsequent access and retrieval. For time-dependent multimedia data this presents some

interesting challenges. Problems arise due to the strict timing requirements for playout

of time-dependent data. From our TIB model it is possible to derive a playout schedule

appropriate for the available resources at the time of delivery. Converting the relative timing

specification of the TIB model to an absolute one and scheduling this specification on the

available resources achieves this purpose [20]. Furthermore, it is possible to derive an absolute

schedule from the TIB representation in either the forward or reverse direction, or for only

a fraction of the overall playout duration [19].

Besides intelligent data organization, suitable operating system behavior is necessary

for multimedia data delivery. Timing relationships between audio and video are preserved

during multimedia synchronization. Furthermore, in an application supporting audio and

video playout such as our VVB prototype, nontraditional DBMS data access mechanisms
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are necessary to support TAC functionality. These TAC operations include reverse, fast-

forward, fast-backward, midpoint suspension, midpoint resumption, random access, looping,

and browsing. These operations are feasible with existing technologies. However, when

non-sequential storage, data compression, data distribution, multiple accesses on a server,

and random communication delays are introduced, the provision of TAC capabilities can be

very difficult. Examples include viewing a motion picture backwards or reversing an ani-

mation of a series of images, rapid viewing of a long sequence of images (fast-forward or

fast-backward), and stopping and starting of a motion picture (midpoint suspension and re-

sumption). Browsing and other operations involving random user interaction can be satisfied

by data prefetching, caching and other approaches (e.g., Dannenberg, et al. [7]).

2.5 Metadata Services for Supporting Interactive Multimedia Ap-

plications

Along with efficient schemes that capture content and timing information from continuous

media are the requirements for mechanisms that enable browsing and data delivery. To

simplify the query mechanism and increase interactivity, most database systems employ a

“metadata” mechanism. Metadata are “data about data.” In our context, this means that

they contain concise information about the location and characteristics of the data to be

retrieved (e.g., movie titles, where they are stored) [18]. The metadata approach decouples

the data delivery process from the database management functions.

With a metadata system the user can quickly go over an information summary and

select the data to be delivered without retrieving the actual data objects. This concept is

particularly appealing with respect to stored audio and video which can be costly to deliver

and can consume significant portions of a data server’s I/O bandwidth.

The metadata concept is also ideal for interactive multimedia applications in which many

objects can be involved in a single presentation. For example, a movie might involve the

coordination of audio and video streams, a classroom video might involve the simultaneous

presentation of audio, video, graphics and text. The metadata server maintains the rela-

tionships between these diverse objects and informs the client of their presence whenever a

query is made. When resources are overloaded or not available, the metadata server finds al-

ternate sources of information, if available, or informs the user of their non-availability. The

metadata server also keeps track of changes to the system configuration which can include

resource relocation, failure, and the announcement of new resources.
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Using the metadata model provides us with a simple scheme that is quite powerful.

As database entries are used to maintain the relationships between objects, the metadata

can be easily extended to support different media formats by object redirection. This is

particularly appealing when supporting heterogeneous terminal devices with different display

and presentation devices.

Associated with the problem of locating the desired data for the user is the related

problem of distributing data across the system. In a distributed information system accessed

by hundreds of users, there exists a need for efficient schemes that distribute data to storage

sites where they are most likely to be used [17]. However, a detailed discussion of this issue

is beyond the scope of this paper. We now examine the application of the models described

in Section 2 in building a prototype VOD system, the VVB.

3 The Virtual Video Browser

The basic objective in the development of the VVB prototype has been to illustrate the

capabilities of our temporal modeling scheme and to gain experience with an interesting

multimedia application that requires the convergence of many technologies. Secondary ob-

jectives were to design a software system with various desirable properties including ease of

use and understanding, ease of maintainability, portability, and extensibility.

The VVB operates in association with a distributed multimedia database. Movies and

scenes of movies can be identified and viewed through the VVB based on movie-specific at-

tributes including actor names, director names, and scene characteristics. Similarly, courses

can be specified based on subject, instructor, and lecture-unit attributes. Video content

indexing is facilitated by summary, keyword, and transcript searching. Besides viewing

scenes, the user can access related textual information including summaries and transcripts

of scenes, shots, etc. The VVB incorporates a simple query interface that lets users specify

their preferences to the system to retrieve the appropriate video. The user interface was

developed via approximately eight iterations of fast prototyping and user evaluation.

3.1 VVB Operation

The VVB is characterized by five operational modes and associated interfaces. These are:

(1) category selection menu, (2) virtual video shelves, (3) query input, (4) query output, and
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(5) video playout interfaces, described as follows.

The opening menu (Fig. 10) of the VVB displays images representing each of the available

categories. The user can choose a category by the click of a mouse button. Each genre is

identified by a picture. For example, the “western” category is indicated by a desert scene

with cacti. Once a category is selected, the virtual shelf screen appears, showing an iconic

representation of shelves of a video rental store.

The virtual shelf screen (Fig. 12) is a virtual display of the available movie cassettes as

patterned after a video rental store.5 Each video on the virtual shelf screen is represented by

a rectangular icon that resembles the shape of an actual VHS video box. To help distinguish

videos of different categories on the video shelf screen, each video on the screen contains an

icon which represents an available category. If several videos are to be displayed, the user

can move between multiple shelves using the arrows on the bottom of the screen. Selection

of a movie icon brings up the query output and video playout screens. When the query

button is pressed, the query input screen appears.

The query input screen (Fig. 11) allows the user to create database queries in the identi-

fication of scenes for viewing or to identify a desired movie. This interface permits the user

to make queries to the database on any content within the realm of courses or movies. For

example, using the VVB the following database queries are possible:

• Find the movie in which Humphrey Bogart says “Play it again Sam.”

• Find scenes with boat chases involving James Bond.

• Find all course segments dealing with homework assignments in Geometry 101 the past

3 years.

• Find all slides related to “Gaussian Distributions” in all courses.

In addition to the iconic graphical representation of the selected video, the VVB can

display any textual data from the database by using available attributes. This functionality

supports quick scanning of the database to find a video of interest. The query output screen

(Fig. 13) is invoked by performing database queries using the database query input screen.

Each time the “Apply” button is depressed on the database query screen, a query is issued

to the database manager and a list of movies is returned.

5Loeb [23] mimics a jukebox in a similar manner for the purpose of achieving rapid user acceptance.
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The set of input and output application-specific relations accessible for query are movie,

scene, and actor.6 Their attributes are summarized in Table 1. Similarly, for classroom

videos, application-specific relations accessible for query are course, instructor, and lecture-

unit. Their attributes are summarized in Table 2.

Table 1: Motion Picture Database Attributes

Movie (M) Scene (S) Actor (A)
title keywords name
director setting date of birth
producer summary* sex
year transcript*
category
summary*
rating
character

Table 2: Classroom Video Database Attributes

Course Instructor Lecture-Unit
title name title
number department number
summary sex year
syllabus semester

summary
keywords

Once a video or scene is selected with the mouse from the virtual shelf or query output

screens, the video playout screen appears. This screen provides the visual interface for dis-

playing different parts of a movie and supports TAC buttons. A user can scan from scene

to scene beginning with the initial selection.

3.2 VVB Mechanics

The VVB system architecture is designed to support many video-terminals, or clients, and

video-databases, or servers, interconnected via a computer network (Fig. 5). No particu-

lar assumptions are made about the underlying network in its design. A metadata server

6To satisfy the requirement for query input simplicity, we sacrificed the ability to support multiple same-
attribute queries, even though the underlying data models and DBMS can support them.
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(possibly distributed) called the query-database (QDB) contains the information about the

availability of videos and their locations within the VOD system. It maintains the availabil-

ity of different resources in the system and acts as a name-server that maps movies to the

video databases.

metadata server

computer network

client clientquery data base

query data base video data base video data base

Figure 5: VVB Architectural Model

The video-databases (VDBs) contain the video data (movies) necessary for playout. The

clients are provided with the necessary hardware/software to support the VVB user-interface

and movie playout. For implementation purposes, it is assumed that while the QDB is located

at a single site known to all network stations, the VDBs are distributed across many sites in

the network. When the user wishes to view a video, a query is made first to the QDB for an

interpretation of user browsing operations. The delivery of the video data to the user begins

after the user has browsed the selections, issued a command to “play,” and has been given

permission to do so from the server. In the remaining subsections we examine the connection

establishment and maintenance functions necessary to support these processes (Fig. 6).

3.2.1 Query Phase

The query phase involves the querying of the QDB to get all information required by the

client to obtain a selected movie or scene. The query mechanism is implemented using a

remote procedure call (RPC) between the client and the QDB.7 A query phase is initiated

when the user selects a category. The client system then queries the remote database (the

QDB) for videos in the specified category. The user can get additional information on the

selected videos including a summary, poster, or textual description of a scene by further

querying the QDB for specific data. The QDB has the additional functionality of guiding

the client to the VDB that contains the desired information. The QDB makes sure that

the VDB being accessed has enough residual capacity to support the new connection before

7POSTGRES is the DBMS used in the VVB implementation of the QDB.
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The Virtual Video Browser (VVB) Interface

Query for Movie
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Query DB Server

Query Database

Playout Controller
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Video DB Server

Video Database

Playout Mechanism

Connection Setup
& Flow Control.

Figure 6: Mechanics of the VVB Operation

directing the client. The advantage of this approach is that the data location process becomes

transparent to the user.

3.2.2 Connection Establishment

If the user decides to view a video sequence, the system enters the connection setup and

playout phase. This phase is divided into two parts; the connection setup phase, and the

connection management phase. During connection setup, the client checks with the VDB to

see if it can support a new connection. If a connection can be set up, a negotiation phase

is initiated during which QOS parameters are negotiated. If the negotiation proceeds to a

successful conclusion, the connection setup and maintenance phases are initiated.

The client requests the establishment of a connection with the VDB specified in the

query process. In the VVB, the delivery of video data to the client occurs over a network-

connection that lasts the lifetime of the session. The advantage of this architecture is that

it can support diskless clients that cannot cache the video data locally. Alternatively, the

entire video file can be transferred and cached at the client workstation. However, there are
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several disadvantages to this approach as described elsewhere [15].

The video server evaluates the system state to ensure sufficient resources are available

for movie playout for the duration of the feature presentation. If the connection cannot be

supported, the server sends back a “connection refused” message and the client must repeat

the query to the QDB to find an alternate source of data.

Table 3: Typical Server Functions at Connection Setup

check num connections() Check to see if a new connection
can be supported.

retrieve video chars(video name) Retrieve video characteristics
for QOS negotiation.

indicate QOS needs( max rate, min rate,...) Indicate QOS Requirements.

increment num users() Reserve resources.

start QOS negotiation(video name, client name) Begin QOS negotiation.

setup connection(video name, client name) Spawn a process to setup
dedicated UDP connections.

Table 4: Typical Client Actions During Connection Setup

query video database(database name, video name) Query the VDB for the
specified video.

examine video statistics(video params) Check to see if the connection
can be sustained.

acknowledge conn acceptance() Start the connection.

setup playout and wait for connection() Initialize the playout hardware
and wait for the connection call
from the remote server.

If the connection can be supported, the server then proceeds to examine the characteris-

tics of the required video from the VDB. Depending on these characteristics, the server then

starts a QOS negotiation procedure.8 If the negotiation completes successfully, and mutually

acceptable QOS parameters are agreed upon, the connection is established. Otherwise the

connection is terminated and the resources are freed up. During the QOS negotiation phase,

network and storage resources are reserved for the new connection and will be released only

if the connection setup fails. This ensures that there are no deadlocks at the server.

Once the QOS parameters are established the server initiates a new process to handle

the transfer of video data. A dedicated connection is set up between the client station and

8The QOS negotiation stage is not currently implemented on the VVB prototype.
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the VDB. The functions that are required at the client and server machines for connection

setup are summarized in Tables 3 and 4.

3.2.3 Connection Management

Setup/Maintain Conn.

Setup/Maintain Conn.

TCP Interface

Playout Mechanism

User Display User Input

User Input Translator

TAC DaemonTransfer Mechanism

UDP Interface RPC Interface

Figure 7: Connection Management for VVB

Connection management processes are responsible for ensuring that the QOS parameters

negotiated at the time of connection setup are maintained during the lifetime of the connec-

tion. In addition, user inputs are translated and sent as control signals to both the server

and the client for processing. Certain functions such as audio volume controls are dealt

locally via the playout mechanism at the client. Other functions involve the delivery of the

proper signal to the VDB server for appropriate action. The connection management flow

is illustrated in Fig. 7. Some of the functions that are required for connection management

and maintenance are summarized in Table 5.

In the VVB, the delivery of data between the client and the server takes place via a UDP

connection. The choice of UDP was due to the need for supporting data delivery in real-

time. Even though TCP is a more reliable protocol, it introduces additional delays due to

retransmission which are not acceptable for real-time video communication. Furthermore,

video data are tolerant to losses and we exploit this characteristic in our design. Flow

control is facilitated by an out-of-band feedback circuit over a TCP connection. This is used
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to ensure the timely delivery of video frames to the client. The system can adapt itself to

load changes that can affect continuous media playout using this feedback mechanism.

Table 5: Connection Management Primitives for the VVB

playout video() Indicate to both the client and the server to
ensure that frames are played out at the proper rate.

forward video() Indication to the server to playout every
nth frame in lieu of consecutive frames.

reverse video() Analogous to forward video().

pause video() Pause video stream. Directed toward the playout
mechanism and the server.

change volume() Change volume at the client.

3.3 The VVB Database

The VVB database is implemented using the POSTGRES DBMS [33] and several data

schemata. These schemata provide application-specific data access based on content as

well as TAC functionality through our temporal models. A third data schema relates the

application-specific data model to the temporal model. These schemata and their relation-

ships are illustrated in Fig. 8 using a network representation.9

3.3.1 Database Schema

The application-specific schema defines the VVB system application database to which

queries can be made. For movie-specific data, it contains six components, implemented

as relations: movie, scene, actor, movie-scene, scene-actor, and movie-actor. The actor rela-

tion describes actors and actresses. The movie-scene relation defines the parent-child relation

which identifies all movies and their scenes. The scene-actor relation defines the relation to

identify which actors are in which scenes. The movie-actor relation defines the relation to

identify which actors are in which movies. Example data in these fields are illustrated in

Tables 5–8.

The temporal schema captures the relative timing relationships between components of

the movies as described in Section 2.3. In order to relate the application-specific schema

9This structure is rendered as a relational model for the database management system (DBMS) in
POSTGRES.
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movie-id actor-id
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Application-Specific
Schema
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Schema Interface

terminal

TR

node-id

character

rating

Figure 8: Database Schema for VVB System

Table 6: Example Data Fields: Actor

actor id name date of birth sex
001 Sean Connery August 25, 1930 male
002 Ursula Andress March 19, 1936 female
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Table 7: Example Data Fields: Movie Actor

movie id actor id character
001 001 James Bond
001 002 Honeychile Ryder

Table 8: Example Data Fields: Movie

movie id title director producer year category summary liner
001 Dr. No Young Broccoli 1962 action sum1 img1

for a video database to the temporal schema we use the schema interface. For the VVB

application, this component consists of two relations, scene-node and movie-node, as defined

in Fig. 8.

3.3.2 Query Engine

The query engine for the VVB records the input selection from the query input interface in a

data structure called DBQin. For each selected input attribute, a corresponding component is

generated in the Postgres-Query-Language (PQUEL) query. Similarly, each selected output

field results in a term in the PQUEL query. The make query subprogram then formulates

the PQUEL text string as:

retrieve <determined by output selections >

from < m in movie, s in scene, a in actor>

where <determined by input selections>

The text string is built by retrieving from tables the appropriate strings and adding the

user input text as appropriate. This final PQUEL string is passed to the POSTGRES DBMS

Table 9: Example Data Fields: Scene

scene id keywords setting summary transcript
001 license to kill Crab Key Island Bond swimming Oh James
0010 skiing Swiss chalet Bond skiing Shall we ski?...
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where it is executed, resulting in the return of the selected output attributes.

3.4 Software Architecture

In order to meet our objectives of application flexibility, extensibility, portability, and main-

tainability, we have designed the VVB system software in a layered fashion. This simplifies

the replacement of software components with changing technology. For example, we can eas-

ily replace the video compression/decompression subsystem to accommodate new algorithms

and hardware improvements.

The software design of the VVB system is divided into three distinct components [18].

These components are the user interface, the database, and the imaging system. An ap-

plication programming interface (API) has been created to provide functionality in each

case. The actual VVB application is implemented on top of the APIs to satisfy the VVB

requirements. A particular advantage with this design methodology is the ability to create

new applications from existing code because most of the VVB functionality is implemented

within APIs. Below is a diagram of the three different APIs and how they relate to the

commercial off-the-shelf (COTS) products and the VVB application (Fig. 9).

application

database interface

postgres DBMS

user interface

Motif/X11

video display library

video library

COTS software VVB software

Figure 9: Software Architecture of the VVB System

The existing VVB system is implemented in C on a Unix platform and uses X11, Motif

and POSTGRES. Digital video recording and playback are facilitated by XVideo hardware

from Parallax Graphics Inc. Currently the VVB supports the delivery of M-JPEG data. We

are scaling the application to support other encoding formats.
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4 Discussion

The VVB was developed primarily as an application to demonstrate our research results from

our earlier work in the modeling of time-dependent data. To this end it has satisfactorily

achieved its purpose; we are able to specify and store temporal relationships and use them

in media playout. However, the inherent sequential characteristics of conventional videos

limit the application of our temporal models. Entertainment video is not a multimedia-

rich environment as movies are homogeneous and sequential in nature. For this reason

we are pursuing additional applications that require the full range of TAC functionality.

Educational material (classroom videos with associated text and stills) presents us with a

much more diverse data set to experiment with.

The VVB can also be evaluated from several other perspectives. In particular, these

are (1) number of supported users, (2) database retrieval performance, (3) ease of use, (4)

diversity of semantic database content, and (5) complexity of database maintenance.

In our current configuration, the number of supported users is limited by the availability

of compatible video decompression hardware. With additional workstations served by the

same video database, the available bandwidth of the communication medium (Ethernet in

our testbed) and the I/O performance of the database server become the performance bot-

tlenecks. Selection of number and performance of storage and communications components

in a VOD scale-up is dependent on component costs and degree of supported VOD func-

tionality. For example, our studies indicate the feasibility of supporting up to five true-VOD

sessions (users) from a conventional hard disk storage device [5]. Performance limitations

are primarily due to component bandwidth limitations and not the behavior of the VVB in-

terface. The VVB has been successful in attaining our objective of ease of use. This quality,

necessary for the VVB to gain user acceptance, was achieved through the development of a

simple human-computer interface using fast prototyping and numerous iterations with user

feedback.

In terms of diversity of supported semantic content, the VVB is limited by our choice of

domain-specific attributes. In order to support a wide range of queries (e.g., “find a scene

containing a dog”), attributes are required to be identified a priori, or supported dynamically.

The former requires knowledge of a large set of potential queries. A dynamic approach would

search for content in available data including in the transcripts, audio tracks and video

segments. The VVB can find the scene with the dog assuming that “dog” is identified in the

summary/transcript for the appropriate scene. However, a more interesting solution would
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interpret a diverse set of input queries and apply them on the unstructured audio and video

data as well as to an established semantic net containing pre-extracted information. This

requires image segmentation and feature extraction which are currently not implemented in

the VVB.

Database maintenance is also an issue that is closely related to the problem of dynamic

attribute identification. As videos are created and added to the VVB database, video content

must be extracted and indexed. This process is currently not automated. However, we are

currently developing a semi-automated procedure for parsing movies using image and audio

processing. As a basis, we have successfully used video frame size dynamics to identify scene

transitions in an application called the Motion Picture Parser (MPP) [6].

5 Conclusion

In this paper we have overviewed the various technologies required to support a content-

based retrieval from a multimedia information system encompassing video data. We have

also presented a distributed database organization for multimedia information systems based

on the use of metadata and resource servers. We have identified and illustrated the service

primitives required for the management of continuous-media sessions in a distributed system.

The concepts presented are illustrated by example of the prototype VVB application.

The VVB uses a client-server architecture to support browsing of a metadatabase of video

databases and to set up video sessions to remote video servers. The system demonstrates

our conceptual modeling scheme for time-dependent multimedia data and serves as a basis

for a more general system supporting diverse multimedia data types.

The VVB uses a two phase process to serve its users. These are (1) a query phase during

which user queries are sent to the metadata server and (2) a connection establishment and

maintenance phase, during which sessions are set up between the video server and the client

machine. The VVB is currently in use on a testbed of Unix workstations interconnected

via Ethernet. The VVB interface has also been reimplemented to operate on the World

Wide Web (WWW) using a forms-based interface. To be used as a viable alternative to

applications such as courses-on-demand, the VVB needs to support a large number of users

and a rich data archive. We are currently considering the effort required for such a scale-up.

In the future, we plan to extend our system to support semantic models for information

capture, automatic feature extraction/segmentation, and additional applications.
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Figure 10: The VVB Input Screen
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Figure 11: The VVB Query Screen
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Figure 12: The VVB Shelf Screen
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Figure 13: The VVB Playout Screen
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