
A Tcl/Tk-Based Video Annotation Engine1

M. Carrer, L. Ligresti, and T.D.C. Little

Multimedia Communications Laboratory

Department of Electrical and Computer Engineering

Boston University, Boston, Massachusetts 02215, USA

(617) 353-9877, (617) 353-6440 fax

tdcl@bu.edu

Abstract–The population of a video database requires tools for manipulation and annotation of

raw video data. Characteristic of this requirement is the need to satisfy many disparate video-based

application domains. In this paper we describe the design and development of a video annotation

engine called Vane, intended to address the issue of domain-independent video annotation. Rather

than relying on a single, general data model and application interface, we developed a dynamic

interface and data model using the Tcl/Tk environment and SGML document type definitions

(DTDs). This approach allowed us to implement an intuitive graphical user interface application

that is easily portable to different systems. The tool is currently in use to annotate a video archive

comprised of educational and news video content at Boston University.

Keywords: Tcl/Tk, GUI, video annotation, database, metadata, SGML.

1Proc. 5th Annual Tcl/Tk Workshop ’97, Boston, MA, July 1997.

1 Introduction

A Video Database is a system which provides solutions for storing and then retrieving digital video.

The primary distinction of a video database is the ability to rapidly locate and retrieve video

content. This “fast access” enables new applications of video information such as personalized

news-on-demand and educational reuse of classroom instruction that would otherwise be content

or feature-deficient [5].

The goal of a video database application is to provide this fast access to the information in the

video data. To accomplish this objective, however, an approach for characterizing this information

must be developed. The video content (i.e., the information embedded in the video data) must

be extracted from video data, stored, and managed. Techniques for this process can be static or

dynamic, and manual or automated. Due to our desire to construct working systems, we focus

on pragmatic alternatives. This steers us towards semi-automated techniques that apply shot

boundary detection coupled with human annotation. Moreover, our motivation has been to create

a tool for collecting a reusable universe of annotated, interconnected multimedia documents that

can subsequently be translated, indexed, and stored in any database in any format. That is, we seek

to “front-load” a multimedia database rich in video content. However, because of the complexity

of the problem, most of the proposed solutions are domain-specific, being optimized to work only

on specific video content such as news, instruction, or specific categories of movies.

To incorporate cross-domain annotation functionality in an annotation tool, we make use of

SGML (Standard Generalized Markup Language) whose context rules are highly customizable

through definitions in a DTD (document type definition) tailored for video content. Therefore, we

can establish a common nested structure across domains and simultaneously consider the properties

of different domains. This is achieved by associating a DTD with each domain. All of the DTDs

have common elements or objects, but the attributes associated with these elements differ with

each domain. The metadata, describing information content (annotations), therefore, exist in an

SGML-compliant format, making it easy to make post-annotation changes or enhancements to the

annotated data without requiring a redefinition of the end-application data model.

On top of this structure, one can develop a user interface and system I/O for the annotation

tool. Such an application interface must not only present common characteristics such as usability

and consistency among different domains but must also be aware of the context rules used in

the particular domain of the current annotation. Moreover, it must behave according to what

is specified in the domain DTD and therefore must present a different layout for each specific

domain. It must be very flexible offering powerful graphical means for editing and modifying

existing annotation documents.

To this end, we have used Tcl/Tk as a scripting language and toolkit for implementation of

our annotation tool. The outcome of our work is Vane, a multipurpose, domain-independent video

annotation application [4, 3]. It has been developed taking advantage of the most advanced Tcl/Tk

features for an easy building and reconfiguring of GUI widgets at execution time. Thereby offering

a novel application model for Tcl/Tk.

The remainder of this paper is organized as follows. In Section 3 we consider the fundamentals

2

of the video annotation domain. In Section 3 we describe the details of the annotation tool. Section

4 concludes the paper.

2 Background

Before proceeding with a detailed explanation of Vane and its novel use of Tcl/Tk, we introduce

our context with an introduction to video databases and SGML.

2.1 Fundamentals of Video Annotation

When video and audio signals are brought into a digital system, they yield a format that is very

different from alphanumeric data. Textual information supports concepts of alphabetical ordering,

indexing, and searching on words or phrases. In contrast, video and audio data yield a format that

does not provide straightforward access to its content. Ordering of the basic units for audio and

video (sample and frame, respectively) is temporal. The analogous indexing or searching based on

pattern matching is a much more difficult task, one that has yet to prove as complete and successful

as vector-space text indexing [1].

Because of the lack of satisfactory techniques for extracting information from raw video or audio

content, we seek alternative schemes for achieving the same goal of supporting indexing and query

of content. Fig. 1 illustrates the overall process of video annotation that we describe here.

For simplicity, we define the following terminology used throughout the paper. Raw digital

video and audio data are aggregated and called video data. The content of the video and audio are

referred to as video information, but are captured as metadata. Thus, video information describes

the content of video data stored in the video database.

Video data, at a finest grain, are represented as individual frames. As such, any segmentation

and feature extraction applicable to still images is relevant identification of the information con-

tained in each still. We therefore, focus our attention on the information that is obtained by the

juxtaposition of stills (i.e., shots), and the associated sound track, in a video composition. The

process of isolating small units of the video (segments) is also called segmentation. This process

achieves a partition of the entire video stream into collections of frames whose characteristics are

common.

Data Model

Information
Extraction

Segmentation

Manual and/or Automatic Annotation

Video Data

Indexed Video
(Annotations) Metadatabase

Figure 1: Block Diagram of the Functions and Data Flow in the Video Annotation Process.

3

The next step in the process of video database construction is identification of the contents

of the video or information extraction from the raw video data. Even if the logical partition of a

video stream can help in dealing with raw video data, it is still very difficult to extract information

from the raw data on-the-fly. All approaches reviewed from recent literature support the idea that

in order to achieve fast data retrieval through queries, video information must be extracted from

the raw video data and then stored in a different, more readily usable format which constitutes

the input for the query engines. Information can be extracted automatically or manually. The

new format must contain references to points in the physical video data so that a particular video

segment (e.g., a news item, a movie), or a part of it, can be easily retrieved from the video database.

Of course, a suitable model must exist to bin the extracted information or to otherwise represent

it in a manner that will lead to fast and efficient retrieval. Subsequently, the video information can

be stored in this representation in the act of video database population.

2.2 SGML

In the early 1980s, the International Standards Organization (ISO) has proposed the Standard

Generalized Markup Language, (SGML) (ISO 8879), as a mean of managing and organizing infor-

mation [2]. It was aimed to increase the portability of a wide range of documents between different

computer-based systems.

The main idea behind SGML is the separation of the content of a document from the way it

should appear in the output: information is managed as data objects instead of characters on a

page. This division is obtained using markup: a series of instructions, mixed or embedded in the

text of the document, which gives the system all the necessary processing rules. Traditionally,

procedural markup has been used in most electronic publishing system, giving the typesetter the

necessary directions about how to fit the document text on the final page. SGML makes use of

generic markup, also known as descriptive markup: rather than focusing on how the text should

graphically appear on the page, generic markup defines the purpose of the text in a document.

Data is broken into discrete objects of information, called elements, that carry intelligence about

their meaning within the overall system. Elements are organized in a strict logical structure which

defines a rigorous hierarchical model for the document. To understand how SGML works, the

relationship between the content and the structure of a document can be analyzed in two different

layers:

• Structure: a file called the Document Type Definition, (DTD) sets up the whole document

structure. It provides a framework for the types of element that constitute a document; it

also defines the whole hierarchical relationships within the elements and sets the context rules

that must be followed, to ensure a consistent and logical structure in the documents.

• Content: tagging is the method used by SGML to isolate the content within the document:

by using start and end tags, logical elements are identified. With SGML, it is possible to

associate attributes of arbitrary type to any element: user-defined or enumeration, numbers

and strings. Elements can also be nested within other elements determining the organization

of the document. As tags should strictly respect the set of context rules defined in the DTD,

4

special software, called SGML Parsers, have been designed to check the consistency of a

document with its DTD.

In brief, this technology enables the efficient storage and reuse of the information, sharing it

with many users and maintaining it in a database. We apply SGML as a format to capture and

characterize video information as metadata in the Vane tool. Additional details of SGML can be

found elsewhere [2].

3 Vane: the Video Annotation Engine

In Section 2.1 we described the fundamental role of annotation in the process of organizing and

building a video database. One of the key objectives for the Vane tool is to accommodate different

application domains from a common basis, i.e., via extensibility and customization rather than by a

comprehensive but inflexible solution. To this end, we have designed the Vane tool to be a domain-

independent application with the ability to support different domain-specific data models without

rewriting the tool itself. This has been accomplished through the use of SGML and an exploitation

of its unique characteristic of separating the context rules from the information content.

In the design of Vane we incorporated a high-level semi-automatic annotation process which is

intended to extract the content and semantic value of a raw video stream. Therefore, the Vane tool

has been developed to support and assist the annotator as much as possible so that annotation is

expedited and leads to canonical representation of information as metadata within the application

domain. It is therefore semi-automated. Finally, the Vane tool supports the playback of digital

video in MPEG format with the conventional video shuttling functions.

The design of the Vane tool is decomposed into two parts dealing with metadata issues and

user interface issues. Before considering in details of the latter, and thus the main relevance of

this work to Tcl/Tk, some considerations about the video data model design are necessary. As you

will see, these considerations will lead to precise requirements that have to be satisfied by the user

interface, directly addressing Tcl/Tk features.

3.1 Video Data Modeling and DTD

In SGML, the content of a document is separated from its structural definition. For this reason it

is also possible to build a system that facilitates a dynamic document definition according to the

annotator’s needs and to the domain of the content to be annotated (we consider video content,

which is unusual for SGML). Thus, it is possible, and we have achieved, a dynamic GUI based on

a dynamic DTD.

It is clear that in this scenario in which several types of video can be annotated the Vane tool

will have to deal with different documents constituting the annotations. Each will refer to its own

DTD. To ensure the consistency of SGML documents with the context rules specified by their own

DTDs, we applied an SGML parser in the input stage of the tool. Among its functions is the

5

DTD

Annotation
(SGML)

Segmentation
Detected

Shots

SGML
Parser

Annotation
Data

Raw
Video Data

Annotation
SGML + DTD

Editing

Error Messages

Figure 2: Block Diagram of the Vane Tool.

notification of mismatches between the opened annotations and the corresponding DTD. Fig. 2 is

a block diagram of the Vane tool.

The analysis of the video content follows a structural decomposition. The object representing

the whole video stream can be considered the largest container in which all objects are encom-

passed. Its subsequent logical decomposition is performed using the basic structural decomposition

as sequences, scenes, and shots.

We took all these concepts and ported them into a document type definition which takes the

following syntax:

<!ELEMENT FULLDOC - - (ABSTRACT? , CATEGORY? , REF* , SEQUENCE*, OBJECT*)>

<!ELEMENT SEQUENCE - - (ABSTRACT? , REF* , SCENE*)>

<!ELEMENT SCENE - - (ABSTRACT? , REF* , SHOT*)>

<!ELEMENT SHOT - - (ABSTRACT? , REF* , TRANSCR?)>

<!ELEMENT OBJECT - - (REF* , OBJECT*)>

<!ELEMENT ABSTRACT - - (#PCDATA & REF*)*>

<!ELEMENT TRANSCR - - (#PCDATA)>

<!ELEMENT REF - O EMPTY>

<!ELEMENT CATEGORY - - (EDU | NEWS | MOVIE | DOC | SPORT)>

The previous lines constitute the basis of the definition of an SGML document. All the objects

and their roles are here defined. An object is identified by an ELEMENT and its content model is

enclosed in following parentheses. A set of attributes of default attributes is also associated to the

four main elements, FULLDOC, SEQUENCE, SCENE and SHOT.

For every ELEMENT an entry field has to be defined in the Vane tool. While the annotator is

working, Vane should configure itself accordingly to the ELEMENTs defined in the current DTD. In

the next section we present the set of rules that governs the mapping between the DTD and the

annotation window interfaces. Referring to Tcl/Tk terminology, this mapping defines the type of

widget that it is used to represent a field of the DTD.

6

Interface

Metadatabase

Interface
Builder

DTD

Video Archive

Figure 3: Dynamic Interface Definition in Vane.

3.2 Tcl/Tk and the Dynamic Definition

The interface is the key component which links the video archive and the metadatabase with the

human annotator. It must provide meaningful and complete dialog boxes to the annotator to allow

the insertion of all the relevant information. On the other hand, it must also be consistent with

the metadata format and the document definition specified for the current annotation.

We built Vane so that the DTD can be modified in many of its parts to make it suit the annotator

needs and to better describe the current domain under analysis. Opening a new annotation in Vane

means to identify the DTD associated to it. That particular DTD is then parsed by a Tcl procedure

loading its syntax rules in an array in memory. When the annotation of one of the SGML elements

defined is requested by the annotator, a new top-level window is built. Attributes belonging to

those elements are mapped to a Tcl/Tk widget accordingly to their type; it could be a pop-up menu,

an entry, a listbox, or a text area for attributes such as transcript. The sequence of steps followed

to build an annotation window is depicted in Fig. 3. Defining a new DTD for a new annotation

or changing an existing DTD in some of its parts will not affect the Vane implementation as all

annotation windows are built on-the-fly. Here is a list of the possible changes that are currently

recognized on an existing DTD:

• Category Definition. As the CATEGORY attribute can assume only one value among a

discrete set of possibilities, it was thought to keep the list of possibilities open to further

additions. The same operation can be performed on the each subcategory expanding, there-

fore, their sets of values. CATEGORY, SUBCATEGORY and any other elements for which a set of

possible values has been predefined, are shown by a Tcl/Tk pop-up menus.

• Attributes Order. The order of the attributes expressed in the attribute list of each element

reflects the order of the entries presented by the interface. For a better customization of

the annotation tool, the order can be changed and replaced with the one that best suits

annotator’s needs.

• Attributes Definition. Any other attribute, considered relevant for the description of the

video content in the domain under consideration, can be added to the main four elements –

7

FULLDOC, SEQUENCE, SCENE and SHOT. The interface of the tool will adapt itself accordingly

to what specified in the DTD. Some options are offered: if the new attribute’s value can be

chosen only among a defined set, the interface shows it up as a pop-up menu. Otherwise, a

normal entry box is displayed.

The features offered by Tcl/Tk for string and widget handling have been essential in order

to accomplish these characteristics of Vane. The powerful regular expression commands let us

build the DTD parser in a snap. Moreover the unique feature of using strings as array indices

lets us store the parsed syntax in a easily accessible Tcl array. There was no need for complex

data structure and that reduced our implementation time by a considerable factor. Once we had

that, mapping elements’ attributes to widget and building the corresponding annotation window

has been straightforward.

We did not use arrays only to store DTD syntax. From the DTD array we build another

empty array which holds the annotation itself. As shown in the previous block diagram, loading

an annotation means running a SGML parser through it in order to check for syntax mismatches.

If no errors are found, the SGML parser reformats the original SGML document into an internal

format. Another Tcl procedure parses this file and loads the field values in the annotation array.

Being the array indices based on the DTD array (and therefore the DTD syntax), an extra level of

checking for mismatches has being added.

The reverse process is applied to save annotations in SGML format. In this case we browse

through the whole annotation array and generate SGML code following the syntax rules stored in

the DTD array. The result is a “generated” SGML document which is certainly consistent with its

own DTD.

3.3 Details of the Implementation

We designed the graphical user interface taking in consideration all the aspects previously discussed.

We decided to depict the three level hierarchical structure of Section 3.1 with three horizontal

colored bars, each representing a level with a time line on the horizontal axis (Fig. 4). The units on

the time axes can be either number of frames or hours, minutes, seconds. A fourth bar represents

the entire video, also called “full document”; its purpose is to summarize the main information of

the whole annotation. When only a summary of the annotation is needed, the option to shrink the

main window can be chosen at any time.

Graphically, the segmentation results in a division of the shot bar. The same idea of “graphical

split” can be applied to the other bars and the set of frames between two contiguous breaks will be

generally called a segment. An intuitive way to visualize these segments has been designed so that

the start and stop points (frames) can be seen very easily. On each bar, we implemented colored

arrows to identify breaks. On the shot bar (at the bottom) arrows show the starting and ending

frame of each shot; on the scene bar, instead, they are set where shots are grouped together in

scenes and similarly it works on the sequence bar. We used a colored coding scheme in the interface

so that each level is associated to its own color. The top bar acts as a time ruler where references

for each cuts are reported to have a complete view over the current logical decomposition. We also

8

Figure 4: Screenshot of the Video Annotation Tool Main Window.

thought it useful to visualize the attributes of each element according to the choices taken. For

example the category of the video can be seen on the top bar, the name of the sequences on the

second, the ID on the third and the keywords on the fourth.

In Fig. 4, a column of buttons on the left side of the main window can be seen. This series

of buttons has been inserted in the frame for quick access to the main functions. The commands

that can be used from this area are: break, join, zoom in, zoom out, edit properties, and play. In

this way users do not have to access the menu bar for any kind of operation. The zoom in and out

options allow different degree of precision for the views; when the zoom does not allow a global

view, the working area can be shifted thanks to a horizontal scroll bar.

Each single segment identified in the annotation can be selected by clicking on it. It will be

highlighted by changing its color to black. In this way those actions, which are performed on one

or more elements, can be easily accomplished after the selection of the element itself. For example,

to annotate or play only a particular shot, the segment under analysis has to be selected and then

the operation required can be chosen from the menu bar. If there is no current selection, the entire

video (FULLDOC) is played or annotated.

Separate dialogues boxes, dynamically built using the scheme in Fig. 3, have been designed to

let the annotator fill in all the fields defined in the current DTD (Fig. 5).

To change the structure of the annotation, new arrows, which represent breaks, can be inserted

and existing arrows can be moved or deleted. To change the start or stop frame of an element (s

equence, scene or shot), the correspondent arrow can be moved simply selecting and dragging it

along the bar. When this action is performed, a vertical line appears and is moved together with

the arrow so that the precise position of the cursor can be read on the ruler. The interface allows

to “split” a segment, inserting a new arrow and, for example, creating two shots from one already

9

present. This action, which is often used, is called Break Segment. The opposite operation, joining

two contiguous elements (Join Segments) is also allowed. A fast and practical access to these

functionalities has been provided through the toolbar on the left side on the annotation window.

Figure 5: Annotation Window for the Whole Video.

To access the most important information of a particular element in every moment, the im-

plemented status bar is very comprehensive. Keeping track of mouse pointer movements around

the main window, the frame number, the name field and the identification number of the currently

pointed element are updated in the bar in real time.

To make the main window even more information-rich the tool also provides a display the

attributes of each level in the information hierarchy. The choice of the attribute is made through

menus, and the results obtained are shown in Fig. 4 where, for example, the start frame attribute

is visualized in the sequence and shot bars while the ID is reported in the scene bar.

4 Conclusion

The aim of the Vane tool was the design and implementation of an application for the annotation

of video information. From considerations related to the complexity of dealing with video data

belonging to different application domains, requirements for the Vane tool have been recognized

and implemented. To this end, the Vane annotation tool was produced using Tcl/Tk to provide

a domain independent solution to metadata collection using SGML as a basis for the metadata

model. This approach lead us to the novel use of Tcl/Tk as a means for building dynamically

configured graphical user interfaces starting from the DTD of an SGML “video” document.

The application of the similar concepts on different SGML-derived dialects, such as HTML,

might lead to interesting results. This is, however; outside the scope of the development of Vane.

10

References

[1] G. Ahanger, D. Benson, and T. D. C. Little. Video query formulation. IS&T/SPIE Symposium

on Electronic Imaging Science and Technology (Storage and Retrieval for Image and Video

Databases III), 2420:280–291, February 1995.

[2] M. Bryan. SGML: an author’s guide to the Standard Generalized Markup Language. Addison-

Wesley Publishing Company, 1988.

[3] M. Carrer. Environment for the annotation of video information via metadata collection and

management. Thesis, Department of Electronics and Informatics, University of Padova, Italy,

March 1996.

[4] L. Ligresti. Environment for capture, analysis, and annotation of video information. Thesis,

Department of Electronics and Informatics, University of Padova, Italy, March 1996.

[5] R. W. Picard. Light-years from lena: Video and image libraries of the future. M.I.T. Media

Laboratory Perceptual Computing Section Technical Report, 1(339), 1994.

11

