
A Failure and Overload Tolerance Mechanism for
Continuous Media Servers1

R. Krishnan, D. Venkatesh, and T.D.C. Little

Department of Electrical and Computer Engineering

Boston University, Boston, Massachusetts 02215, USA

(617) 353-9877

tdcl@bu.edu

MCL Technical Report No. 03-12-1997

Abstract–Large scale clustered continuous media (CM) servers deployed in applications

like video-on-demand have high availability requirements. In the event of server failure,

streams from the failed servers must be reassigned to healthy servers with minimum service

disruption. Such servers may also suffer from periods of transient overload resulting from a

high degree of customer interactivity. For example, in a video-on-demand system if a large

number of users are viewing a favorite game, many of them could simultaneously request

a replay of an interesting part of the game. This requires a large number of “interactive”

channels within a short period of time and can result in a transient server overload. In

this paper we propose solutions for graceful recovery from overload scenarios arising out

of server failure or customer interactions. Rapid resource reclamation is key to overload

tolerance, and our proposed solution is based on rate adaptive stream merging and content

insertion techniques. We also utilize conventional time-sharing techniques to handle transient

overload. We show that while merging is necessary for achieving overload tolerance, it is

not sufficient, and for a complete solution, content insertion is required. Specifically, we

consider a general clustered CM server architecture model where multiple servers can fail

simultaneously. We develop a model for resource shortfalls that occur as a result of overload

on failure. We also describe optimal polynomial time algorithms for recovering resources to

the maximum extent possible, by clustering streams in real time.

Keywords: Overload tolerance, fault tolerance, clustered video servers, interactive video-

on-demand, content insertion, rate adaptive stream merging, stream clustering, caching.

1Proc. 5th Intl. ACM Multimedia Conf. 1997, Seattle, WA, USA, Nov 1997. This work is supported in
part by the National Science Foundation under Grant No. NCR-9523958, EMC Corporation, and Hewlett-
Packard.

1 Introduction

In conventional file servers and operating systems, on failure or on overload, clients wait

until service is resumed. This is unacceptable for continuous media (CM) applications. In

particular, with video it is necessary that content is continuously available to the viewer even

on the event of server failure.

Consider the following analogy of a movie theater. In the event of a projector failure,

it would be far more desirable to watch a preview of another movie than to stare at a

blank screen, especially if the failure persists for a long time. In other words, it may be

acceptable under failure conditions to alter the presentation in some reasonable way that

does not significantly affect the users. This indicates that the definitions of fault resilience

must be rethought for emerging technologies such as digital video broadcasting, that is, the

structure of data can be reorganized and altered to meet a desired quality of presentation,

measured by the continuity of presentation. Clearly, this assumption must be validated

against the application being evaluated. Inserting arbitrary content would be extremely

catastrophic for an application such as medical imaging where the correctness of data is more

important than the visual experience. However, a majority of home edutainment (education

+ entertainment) applications can take advantage of content modification techniques and it

is these that we consider in this paper.

Video, as a visual medium, is relatively resilient to data corruption due to the high amount

of redundancy in visual information. Fault recovery techniques that take advantage of this

observation can be classified into two broad categories: (i) Techniques that alter content

and (ii) Techniques that drop information. Fundamentally, both techniques achieve fault

resilience by reducing the resources required by a video stream (measured by its bandwidth).

Content alteration techniques take advantage of the intra-image redundancy whereas frame-

dropping techniques take advantage of inter-image redundancy [8, 9, 10]. An alternate

approach is to provide fault resilience by building redundancy into the system as in RAID

based servers [2, 9, 8].

Rate-adaptation and stream manipulation require some content to be dropped [6, 10,

3]. Furthermore, these schemes tend to be either CPU intensive or require a significant

time to achieve the desired reduction in resource utilization. RAID based techniques to

handle overload typically involve over-allocation of resources. In large systems, introducing

redundancies for correcting errors as well as for fault tolerance is expensive. Furthermore,

over-allocation of resources to handle overload is clearly not economical. It is therefore

2

desirable to develop a scheme that makes efficient use of resources yet recovers gracefully

under failure with a minimum impact to the user.

In this paper, we introduce content insertion as a means to reclaim resources and recover

from overloads arising out of a fault condition. Most of the current work in the field

address the overload problem by degrading the quality of service to the user, for example by

dropping information content to recover system bandwidth resources. This does not meet

the requirements of the media broadcasting industry. Additionally, they do not consider the

suitable “reflex-response” that is required to ensure continuity of presentation to the user. We

perceive that the paradigm of “sharing” of resources is better than “rationing” of resources.

Content insertion is an efficient and practical alternative that provides a mechanism to

easily implement sharing of resources. More important, it can be easily adapted to work in

conjunction with other the conventional techniques described earlier.

In content insertion, users are presented with an alternative media stream during overload

or fault conditions while the fault recovery mechanism is activated. The advantage here is

that multiple users can be placed on the same channel thus conserving resources. The new

content can contain advertisements or previews and subsidize customer subscription costs.

In this paper, we focus on building such a fault recovery scheme in a storage server, but

the solutions can be scaled easily to other components such as the network. If the network

gets congested, users can be temporarily placed on broadcast channels until the congestion

subsides. Such a scheme is vastly preferable to a scheme where content is dropped, resulting

in a choppy presentation. A user’s quality-of-service (QoS) is now measured by how often

a user sees an advertisement in the event of failure or overload. A premium user would

always have the desired bandwidth by paying more (except of course, in the presence of a

catastrophic failure). This strategy is similar to the current CATV/DSS paradigm where

users pay extra for subscribing to premium channels for the privilege of viewing programs

with few interruptions.

The main focus of this paper is the use of rate adaptive stream merging and content

insertion to provide overload tolerance. We design a mechanism that recovers the maximum

amount of resources in a given amount of time with minimum impact to the clients and is

fair to the clients. The rest of the paper is organized as follows. Section 2 provides the

necessary background on resource reclamation techniques for continuous media servers and

establishes the basis for our work. In Section 3 we develop a formal model of our system

and then analyze recoverability under different overload scenarios. Section 4 is a discussion

of the associated trade-offs. Section 5 summarizes the ideas presented.

3

2 Background

In this section, we describe a general architecture for a clustered CM server. We introduce

the techniques of batching and clustering using rate adaptive stream merging and content

insertion, all of which are related to our proposed scheme for overload recovery.

2.1 Server Architecture

Consider a general clustered video server architecture as shown in Figure 1. The system

consists of several servers that disseminate content to clients via a delivery network. The

delivery network consists of many channels that are accessible to all the clients.2 This model

is typical for most real world systems. Large-scale storage servers are built as monolithic

units with large caches, inherent fault tolerance and are designed to meet high availability

requirements. User transactions are handled by a cluster of front-end I/O processors that

can access all the stored content.

Fault MonitorAggregation Agent

Fault-tolerant

Storage

CM Server

Clients

Delivery Network

Cluster

Figure 1: Server Architecture

Typically, any server can transmit on any channel but no two servers can use a particular

channel at the same time and we assume the presence of a mechanism to ensure this

mutual exclusion. It is in many ways similar to a CATV architecture but is general enough

to accommodate a packet switched network in which channels can be implemented via

multicast groups. Any channel in use would carry exactly one program stream. Furthermore,

it is straightforward to implement some dedicated channels that continuously transmit

advertisements, news clips or other programs of general interest. These channels permit

content insertion in real-time and play an important role in the fault recovery scheme

2This assumption is only for illustration. Our scheme can be applied to other situations provided that a
large number of clients and servers access a common channel set.

4

described in greater detail in Section 3. We now survey some of the schemes proposed in

literature for resource reclamation in continuous media servers and discuss the applicability

of these schemes for recovery from overload.

2.2 Batching

In batching, new playout requests for streams are grouped together at the time of request

and channels are allocated to groups of users. With batching clients may have an initial

waiting period which can cause them to renege their requests. Clients can be blocked due to

all channels being consumed. The impact of channel allocation policies on quality of service

in the CATV context is analyzed by Nussbaumer et al. [7]. Batching works well as long as

the users do not interact. However, interactions cause users to break away from their groups

defeating the initial gains. Such break-aways must be handled by starting a new independent

stream for the user requesting interaction by drawing from a pool of contingency channels. A

model for optimally allocating channels for batching, on-demand playback and contingency

has been developed by Dan et al. [5].

When all contingency channels are consumed, any user interaction will block. This is an

event which would occur with a very small but finite probability. This cannot be altogether

avoided due to the statistical nature of the allocation policy. Periods of high interactivity can

deplete all the free channels available and no more users can be admitted nor user interaction

be permitted until some streams exit. This is a serious disadvantage of initial batching. Such

situations can also be interpreted as a server overload in the context of this paper.

2.3 Merging

Rate adaptive stream merging (or adaptive piggy-backing) [6] is a technique that attempts

to merge streams by varying their display rates. It has been observed that rate changes of

2− 3% by frame interpolation and expansion or contraction of the total length of the movie

by up to 8% are acceptable in commercial video playback [6]. Content progression rates are

distinct from the data delivery rate or the frame rate. An accelerated content progression

rate implies that the total duration of the video will be reduced and any given scene would

occur earlier in time.

Stream merging policies for resource reclamation in a healthy server are considered in

[6]. Rate adaptive merging of streams reduces resource requirements both at the server and

5

in the network. Batching can also be used in conjunction with merging for increased gains.

We will now illustrate the process of rate adaptive merging with two streams carrying the

same program [6]. .

Time t0

r

rr

r

r

t1 t2 t3 t4

1

Stream P
Position p

Channel C

1

Stream P
Position p

Channel C

1

2 rr +

r -

2

2

r

Figure 2: Rate Adaptive Merging of Streams

In Figure 2, at time t = t0, the streams P1 and P2 carry the same program at rate r but

with a temporal skew. Let the streams be at positions p1 and p2 respectively at time t = t1.

Let p2 < p1, and the positions are measured in terms of access units, like video frames for

instance. By accelerating the content progression rate of stream P2 by setting it to r + ∆r

at time t = t1, we can make the two streams reach the same point in the program at time

t = t3. The catch-up window is determined by the time interval :

Tc = t3 − t1 =
(p1 − p2)

∆r
. (1)

The minimum duration of Tc is constrained by the maximum change allowed in the content

progression rate. It is possible (see Section 4) to set the content progression rate of stream

P1 to r − ∆r at time t = t1 and make the streams reach the same point in the program

earlier, at time t = t2 and the merging time interval T̂c in this case is given by,

T̂c =
(p1 − p2)

2∆r
. (2)

Depending on the rate adaptation policy, the streams reach an identical state at t2 or

t3. At this point all clients receiving stream P2 can be transferred to stream P1 and the

resources associated with P2 can be released.

The size of the catch-up window is severely constrained by the maximum acceleration rate

permissible from QoS considerations. If we wish to use merging in order to release channels

in the event of failure, no resources are freed during the period of the catch-up window,

which can be significantly long. If we wish to merge a failed stream, we allocate additional

6

resources for it until it gets merged. It is likely that extra resources are unavailable in the

event of failure and this shortfall can be significant when a large number of failed streams

must be recovered. The next section elaborates on how content insertion techniques address

this problem.

2.4 Content Insertion

Content insertion can be viewed as a coarse grained rate adaptation technique. This is the

informational view – the primary content rate is altered by the introduction of secondary

content. The secondary content can take the form of other programming. A different and

operational view would explain content insertion as a form of intermediate batching. A third

view arising from scheduling would explain the same technique as time-sharing. All these

different views influence the application of content insertion in our proposed scheme.

Although television commercials are considered annoying by many, they subsidize the cost

of entertainment provided to the consumer. With VOD services, these advertisements can

lower per-user costs in an entirely new way by helping to diminish the number of concurrent

streams via intermediate batching. Content insertion techniques are useful because they buy

us time. This time can be used for time-sharing or in conjunction with merging to increase

the catch-up window or alternatively, in the event of failure give a fallback allowing us to

wait until resources become available. In the next section, we discuss why content insertion

is critical to overload tolerance.

t0Time t3

r

r

t1

Inserted Content

r

r r

t2

2
Position p

Channel C2

1

Position p
1

Stream P1

Channel C

Stream P

rr -

r +
2

t3^

r

Figure 3: Modifying the Catch-Up Window through Content Insertion

Figure 3 illustrates how content insertion works in conjunction with merging to free

resources during the catch-up window as well as to reduce Tc. Let us take the same case

of two streams as in the previous section. By accelerating stream P2 by setting its content

7

progression rate to r + ∆r at time t = t1, and by additionally inserting alternative content

into stream P1 from t = t1 to t2 = t1+Tins we can make the two streams reach the same point

in the program at time t = t3. Tins should be less than the maximum acceptable duration,

Tag of inserted content at any one time. Let p3 = p2 + Tins ∗ (r + ∆r) be the position of

stream P2 at time t2. The catch-up window is now given by

Tc = Tins +
(p1 − p3)

∆r
. (3)

It is possible to also set the content progression rate of stream P1 to r−∆r at time t = t2

and make the streams reach the same point in the program earlier, at time t = t̂3 and the

merging time interval T̂c in this case is given by,

T̂c = Tins +
(p1 − p3)

2∆r
. (4)

However, Tins cannot exceed Tc as this would lead to an oscillatory situation with the

accelerated stream reaching a point in time ahead of the stream it is trying to catch up with.

This yields the inequality :

Tc ≥ Tins or p1 ≥ p3.

If this condition is violated, then the inserted content must be stopped abruptly3 in order

to cluster the streams. Hence we can obtain the following bound on Tins:

Tag ≤ Tins ≤
(p1 − p2)

(r + ∆r)
. (5)

A similar bound can be achieved for T̂c, when the rate of both streams are being altered.

This bound helps us to determine the feasibility of merging two streams using content

insertion. If no insertion clip can be inserted into the stream in its entirety, the streams

are allowed to merge, without any new content being inserted. This choice would be a policy

decision, based on the system specifications.

Consider two streams that are spaced two minutes apart in a given program that must be

clustered. This can be achieved by two minutes of content insertion into the leading stream

and a channel is released in two minutes. With rate adaptive merging, clustering takes much

longer. If we accelerate the trailing stream by 6.67%, 4 then the streams spaced two minutes

3This is undesirable if the inserted content consists of advertisements.
4This value corresponds to a tolerable limit for MPEG streams in a specific implementation by the

authors.

8

apart would be clustered in 30 minutes. In addition, if we decelerated the leading stream,

clustering occurs in 15 minutes. This is an unacceptably long time for overload recovery!

However, rate adaptive merging would still be required to fine tune the clustering process.

Suppose that the inserted content is in the form of 30 second clips and there are several

content insertion channels such that a clip starts on some content insertion channel every

5 seconds. Content insertion can be done smoothly only if the temporal skew between

streams are exactly integral multiples of 5 seconds and the failure or interaction that triggers

clustering is aligned with the start of an insertion clip, both of which are unlikely to happen.

However, these small fractional skews from the start of the clips can be eliminated by the

use of rate adaptation.

Content insertion can be applied to overload situations in an entirely different way as well.

Consider a server that has a capacity to serve 1, 000 channels and the system demand requires

the existence of 1, 025 streams. If we ignore merging and focus on content insertion alone,

assuming that we have content insertion channels, we could switch 25 streams on to these

channels for 60 seconds. Streams can be vacated in rotation and the cycle would complete

in 40 minutes. Thus streams would receive an ad-dosage of 1 minute once every 40 minutes.

In the event that continuous resource reclamation is carried out using merging, the situation

would improve vastly. If the contrary is true, and the overload increases, it would result in

degradation of service manifested as an increased amount of inserted content. We refer to

this situation as stream-thrashing. Arguments similar to overload in time-shared operating

systems come to bear – there are always intrinsic checks and balances that would reduce

popularity with service degradation on overload.5 Section 4 describes additional advantages

due to content insertion.

3 Proposed Scheme for Overload Tolerance

In this section, we formalize our model based on the concepts introduced in Section 2 and

apply it to analyze recoverability under failure and propose schemes for recovery under

different overload scenarios. Table 1 describes the notation used in the paper.

5Detailed analysis of the effectiveness of these heuristics and fairness issues are beyond the scope of this
paper.

9

3.1 Formal Model of the System

Let the total number of servers in the cluster be N and the servers are denoted by Si ; i ∈

{1, 2, ..., N}. Let S denote the cluster. To simplify analysis, we assume that all streams have

identical bandwidth requirements. However, the maximum bandwidth of each server can be

different in the case of a heterogeneous server cluster. Without loss of generality we can use

the bandwidth of a single stream as a unit of server bandwidth.

Let Bi be the total bandwidth of the server Si in terms of the number of streams that

the server can support. Let Li,t be the load on server Si at instant t, in number of streams.

The total bandwidth B available in the system is given by B =
∑N

i=1
Bi. The total load Lt

of the system at instant t, is given by Lt =
∑N

i=1
Li,t. During normal operation, Lt ≤ B and

violating this constraint constitutes an overload.

The interplay between various system components is described via an entity-relationship

diagram (Figure 4). A program stream plays out on a given channel which can be accessed

by several clients. Some channels can be idle and some active channels carrying alternative

content may have no clients listening. A given stream is serviced by one server on any one

channel. Clients can switch between channels autonomously or can be mandated due to

clustering. The special case which is of interest to us, occurs when the clustering is forced

due to the occurrence of faults. Similarly, streams can be terminated or reassigned between

servers on clustering, on fault or possibly to achieve load balancing.

Let Ut = {Uj} be the set of clients in the system at time t and C = {Ck} be the set of

channels in the system. Let the set of active streams in the system at time t be Pt = {Pl}.

If channels are reclaimed continuously by merging, then two streams will carry the same

program if and only if there is a temporal skew between them. The total number of clients

|Ut| can be greater than or equal to the number of streams |Pt|. Typically |Pt| ≤ |C|,

and violation of this constraint constitutes an overload. |Ut| can exceed |Pt| by virtue of

clustering. The global state of the system at any given time t is given by the following maps

:

• Channel Assignment : The channel assignment function, ct(Pi) is injective and assigns

each stream to a channel and a server. It is given by ct : Pt → C × S.

• Stream State : The state of the stream is given by Pl 7→ (pl, s) wherePl ∈ Pt. pl ∈ Z+

is the position of the stream Pl within the program and the state of the session s ∈ {

normal playback, accelerated playback, fast forward, rewind, paused, vacated }.

10

• Client Assignment : The client assignment function ut : Ut → Pt assigns a client to a

given stream.

We also require that the following fundamental primitives, that enable the server to

control the client, are available. They are necessary in order to implement the functions of

merging and content insertion.

ReassignStream(StreamId, CurrentServerId, NewServerId)

SwitchChannels({ClientId}, CurrentChannelId, NewChannelId)

Table 1: List of Symbols Used

Symbol Description

B total system bandwidth in number of streams

Bf loss of system bandwidth due to failure

Bi the bandwidth in number of streams of the ith server

C set of channels in the system

Ck the kth channel

Lt total system load in number of streams at time t

ct channel assignment function

g(Uj) penalty function for the jth client

Li,t the load in number of streams on the ith server at time t

N number of servers in the cluster

Pt set of streams in the system at time t

Pl the lth stream

pi position in program for the ith stream

r content progression rate in frames/second

S set of servers in the cluster

Si the ith server

Tc catch-up window time between streams

Tins duration of inserted content for a stream at any one time

Tag duration of each content insertion clip

Trec time to recover from overload

Tcycle time for one cycle of vacations of streams

Tadspacing minimum time between two content insertion periods

Tconf time to reconfigure a spare server

Ut set of clients in the system at time t

Uj the jth client

ul client assignment function

Let λa and µd respectively denote the mean rate of generation of new streams due to

program requests and the average number of streams that leave the system due to program

11

termination in the system. Let µm be the mean merging rate, which is the average number

of streams that get merged across all servers in unit time and let λf be the mean forking

rate, which is the average number of streams that break away due to client interaction

across all servers. Thus µ, the rate at which channels are released in the system, is given

by µ = µm + µd, and λ, the rate at which channels are consumed in the system, is given by

λ = λf + λa. The stability criterion requires that λ ≤ µ. This is the steady state referred to

later, in Section 3.3.

Client

hasFault

reassign

Clustering

2

2

switch

interacts
Channel

Server

delivers

plays_onStream

Figure 4: Entity-Relationship Diagram of the System

3.2 Failure Model and Recoverability

In Section 2, we surveyed the basic techniques for resource reclamation. In this section,

we develop a fault model that enables us to apply the techniques of merging and content

insertion to recover from the overload arising due to failures. We then introduce our proposed

procedure to handle different levels of overload. In the context of the server architecture

described in Figure 1, the fault monitor and storage are also assumed to be inherently fault-

tolerant. This is a reasonable assumption when storage is an independent component. For

enhancing fault tolerance, the stream fault monitor which checks for the health of all streams

must be implemented as an independent component. However it is possible to implement

the monitoring function distributed among the servers with some loss of reliability.

Let us assume that at most q out of N servers in the cluster can fail simultaneously and

12

Will clustering release enough channels ? Allocate spare channels to failed streams

Accomodate as many streams as possible
Compute residual overload

No

Allocate spare channels to failed streams

Yes

Yes

Are there enough spare channels ?

No

No
Yes

Accomodate as many streams as possible

Yes
Reconfigure server and assign streams

No

Time to upgrade System !

No

(Check for stream-thrashing)

Can a spare server be reconfigured ?

Can timesharing handle the overload ?
Yes

Go into time sharing mode

Compute residual overload

(using Algorithm MCL(x)) Yes

No

Healthy Server

Any failures ?

Is complete state recovery possible ?

Switch failed streams to insertion channels

Recover as much state as possible

Figure 5: Overload Recovery Procedure

13

that no additional failures occur during the recovery period.6 Restoring service to the failed

streams in the event of a failure requires the following:

• The state of each individual streams at the point of failure. We need to know the

state of the streams that were initially served by the q servers that failed. This can be

achieved in several ways:

– The state of any server is stored in at least q+1 servers. This ensures state recovery

on the event of failure of at most q nodes. Alternatively a more sophisticated error

correcting code can be used to stripe the state information with some performance

overhead.

– Global state is stored in the monitor and each server knows its own state. When

the monitor fails independently, backup copies of the monitor must take over.

– Recovery from failure could be initiated by the client. Stream states on each

channel could be retrieved by multicasting requests on each channels that must

be restored. Resolution of duplicate replies can be performed by taking the first

reply or by voting. However client initiated recovery implies temporary disruption

of service at client. This justifies the use of the fault monitor at the server.

• A fixed number of channels that broadcast advertisements or other alternative content

continuously are assumed to be continuously available. In the event of a server failure,

the failed streams are transferred to these channels before recovery. This is necessary

because :

– There is a significant initial latency involved in starting up a new stream even if

there is sufficient spare bandwidth [1].

– Overload due to simultaneous failure of a large number of streams would involve

significant computation time for resource allocation.

– Resources can be unavailable and the overload cannot be handled until some

streams are merged. Merging of streams involves a finite catch-up window as

described in Section 2.4.

– Resources can be unavailable even in the long-term and some streams must be

dropped. From a point of view of revenue, there is more incentive in retaining

popular program streams since they would on average, allow more clustering in

6This assumption translates to a loss of a fraction of the available bandwidth for serving streams.

14

the future. The system requires a finite computation time to determine which

streams to drop.

– The content insertion channels can be used to implement a time-sharing mechanism

that cyclically transfers clients to content insertion channels to handle transient

overloads or while the system configures a new server to handle the overload.

The procedure for handling overload on failure is shown in Figure 5. We consider several

overload scenarios and show how we can handle situations not only when there are more

clients than channels, but also when there are more streams than are channels! The first

step of the overload recovery procedure involves restoration of stream states. On failure of

servers, the failed streams are vacated to content insertion channels as a reflex response. As

a first measure, if there are spare channels available, they are allocated to as many streams

as possible. The next attempt is to recover channels by clustering. This is solved by the

algorithm proposed in the next section which determines the maximum number of clusterings

possible within a given amount of time. If the channels released are insufficient to handle

the overload, the overload is handled by time-sharing of the channels. If the time-sharing

approach is not viable, we configure additional servers to handle the overload. If there is an

overload beyond this, the failure is considered catastrophic and streams must be dropped

according to a suitable pricing policy (not considered in the paper.)

Given that there is a fault monitor in place and content insertion channels are available,

we analyze the conditions that permit partial or complete recovery from the overload, in

the next section. The bandwidth consumed by the content insertion channels is negligible

and is not considered in the analysis. Also, content insertion channels are distributed across

all servers and some of them are available even during failure conditions. We also consider

soft-failure when there is no server failure but there is a transient overload resulting from

increased interactivity. A solution based on time-sharing of the channels via content insertion

into streams in a round-robin fashion is proposed to handle transient overload.

3.3 Recoverability Analysis

Let us assume that the system is in the steady state before the fault occurs at time t = t0. Let

k ∈ {1, ..., q} ; q < N , be the number of servers that fail simultaneously where q is a design

parameter of the system. Let F = {Si|Si is a failed server}. Clearly |F| = k. This failure

generates an extra load Lf
t0

that must be accommodated, given by Lf
t0

=
∑

{i|Si∈F} Li,t0 . The

15

loss of bandwidth in the system is Bf =
∑

{i|Si∈F} Bi. Thus the bandwidth available after

failure is B′ = B − Bf .

Case 1 :

Complete recovery is guaranteed for all streams if net overload is lower than spare bandwidth

after failure. This is the trivial case, Lt0 < B′, when the system has spare bandwidth to

accommodate the extra load due to failure.

Let Tr be the computation time required for resource allocation and Ts be the startup

latency associated with starting up a stream. We assume that these are small finite constants

in the order of a few seconds. The failed streams will have or content insertion for a period

Trec = Tr +Ts seconds. This is also the recovery period for the entire system. This represents

the baseline user penalty on failure. If there is not enough bandwidth available to reassign

all the failed streams to new channels, then a procedure to recover from the residual overload

is discussed in Case 2.

Case 2 :

Complete recovery is guaranteed if total load after clustering is lower than the total bandwidth

after failure. Clustering of streams involves both content insertion and rate adaptive merging.

Content insertion is more powerful and is a coarse grained technique as described in Section

2.4.

We now formulate the clustering problem that handles the overload scenario of Case 2.

Suppose the system can support X channels after failure, and there are x failed streams that

have been switched to content insertion channels. Without loss of generality we can assume

that that all X channels are currently in use and therefore, we need to release x within a

maximum time to recover, Trec. If all X channels were not in use, we can assign the available

free channels to as many failed streams as in Case 1 and thereby reduce it to Case 2. The

time to recover, Trec represents the maximum content insertion period for clients.

The solution to the problem first involves determining whether it is possible to release

x channels within Trec and if not, what is the maximum number of channels that can be

released by clustering. The solution must also include the list of streams that are to be

clustered together. If less than x channels can be released by clustering, we release as many

as possible and handle the net overload after clustering by a different mechanism using

time-sharing channels. This would be the Case 3 scenario explained later.

16

We now propose an algorithm called EMCL(x) which takes the number of channels, x,

that are required to be released as an argument and returns a list of clusters to release x

or more channels. If x channels cannot be released, then EMCL(x) returns a list of clusters

which release the maximum number of channels possible. We claim and prove that EMCL

is correct and it executes in polynomial time.

Definition 1 Given two streams Pi and Pj, we define the distance between them d(Pi, Pj)

as the time needed to cluster Pi and Pj to release a channel. If Pi and Pj carry different

programs then d(Pi, Pj) =∞.

Definition 2 A cluster, denoted by (Pi, Pj), Pi 6= Pj is a group of streams carrying the same

program such that every stream in the cluster has a program-position in between and including

that of streams Pi and Pj and such that d(Pi, Pj) ≤ Trec. The size of the cluster |(Pi, Pj)|

is the number of streams in the cluster and at the end of clustering, |(Pi, Pj)| − 1 channels

would be released.

Definition 3 The cluster (Pi, Pj) is the earliest in a given program if there is no other

cluster (Pm, Pn) such that Pm has a program-position earlier than that of Pi.

Definition 4 A cluster (Pi, Pj) is a maximum cluster for a given program, if |(Pi, Pj)| is

maximum for that program.

Definition 5 A cluster (Pi, Pj) is maximal if there exists no (Pi, Pk) such that d(Pi, Pj) <

d(Pi, Pk) ≤ Trec. It is the set of all streams leading Pi that Pi can be clustered with, in time

Trec.

Algorithm EMCL(x)

1. M ← {}

2. k ← 0

3. S ← {(Pi, Pj) | ∀Pi ∈ Pt, (Pi, Pj) is a maximal cluster}

4. M ← M∪{(Pp, Pq) ∈ S} where pp is min. for the program and |(Pp, Pq)| is max. across programs

5. k ← k + |(Pp, Pq)| − 1

17

6. if k ≥ x return M

7. S ← S − {(Pp, Pq)} ∪ {(Pr, Ps) | pp < pr ≤ pq}

8. if S = {} return M

9. goto 4

For the sake of analysis we assume that no two streams considered for clustering are in

identical positions in a program. The EMCL algorithm is quite straightforward. It picks the

earliest maximal cluster which is largest across all movies and adds it to the list of clusters.

This process is continued until we have picked as many or more than the requested number

of streams to be merged, or until no more streams can be clustered. The largest cluster

across all movies is chosen so that the loop terminates earlier when only a small number of

channels are required.

Theorem 1 (Complexity) EMCL(x) runs in polynomial time.

Proof : Suppose every stream in Pt is indexed numerically and the position of each stream

in the program it carries is also known. We can sort the list of streams by the program index

and then by increasing order of positions. Using a counting sort, this would take O(n) time in

terms of the number of streams, n, in the system. The set S in line 3 can then be constructed

in O(n2) time. Lines 4, 5 and 7 take O(n) time while lines 1, 2, 6, 8 and 9 take O(1) time.

Since the loop in lines 4 – 9 might be performed at most n/2 times which is the maximum

possible number of clusters with n streams. Therefore this loop has an overall complexity of

O(n2). Thus EMCL(x) has a polynomial time asymptotic complexity, O(n2). �

Theorem 2 (Correctness) EMCL(x) returns a list that gives at least x clusterings whenever

such a set exists. Otherwise EMCL(x) returns a list which corresponds to the maximum

number of clusterings that are possible.

Proof : Suppose there are n streams in the system and at most α clusterings are possible.

Assume that EMCL(α) returned only β clusterings where β < α. ⇒ ∃ at least one stream Pp

which could have been clustered with some other stream Pq but was not returned by EMCL(α).

Let Pp be the first such stream in some program. If Pp was the very first stream carrying that

program, then (Pp, Pq) is part of a maximal cluster. Also, since Pp is the very first stream in

the program, it would be part of the earliest maximal cluster which would have been picked up

before the loop in lines 4 – 9 of the algorithm terminated. However since it was not returned,

18

it implies that no such Pq exists, which contradicts the assumption that Pp could have been

clustered.

If Pp is also the last stream in the program, any stream Pq with which it could have been

clustered is already part of another maximal cluster. Since this cluster is maximal it could

not have included Pp. Therefore, if Pq were clustered with Pp, then it could not have been

clustered with its present group. So the number of clusterings would remain the same, either

way. This means β cannot be lesser than α.

If Pp was somewhere in the middle and suppose there existed a stream Pq with which it

could be clustered. If Pq was earlier than Pp, we can apply an argument similar to when Pp

was the last stream to prove that β cannot be lesser than α. If Pq was later than Pp, then

(Pp, Pq) would have been part of an earliest maximal cluster and would have been chosen.

This contradicts our assumption. Thus EMCL(α) would return α clusterings if that was the

maximum number possible.

If asked for more than the maximum, the algorithm will still return the maximum by

virtue of line 8. If asked for less than the maximum, it may return a list that results in

more clusterings than requested, since the clusters chosen may not add up exactly to what is

requested. Thus EMCL(x) is correct. �

Choosing the earliest maximal cluster is key to our algorithm’s correctness. Greedy

algorithms which cluster nearest streams pair-wise [6] or those which pick the maximum

cluster first can easily be shown to be sub-optimal by trivial counter-examples. Choosing

the earliest cluster also offers a distinct advantage. The algorithm would work equally well

if we defined maximal clusters around group leaders in the inverse direction and pick the

latest maximal cluster instead. However there is little advantage to be gained by clustering

streams which are going to terminate soon anyway. By clustering streams that are in the

earlier part of the program, the gains are valid for a longer period, provided there are not

many break-aways due to interactions.

Though it is possible to refine the algorithm further to improve performance and to

check for violation of per-user constraints, these are not relevant in the context of this

presentation where we mainly wish to show that we can compute in reasonable time the

extent of recovery from overload that can be achieved via clustering. We present another

algorithm MCL(x), which is a refinement of EMCL(x), that runs in O(n) time and lends to

direct implementation. MCL(x) differs from EMCL(x) in that it does not necessarily pick

the earliest cluster first. The complexity analysis is trivial and correctness of this algorithm

19

follows from Theorem 3.

Algorithm MCL(x)

1. M ← {}

2. S ← {}

3. k ← 0

4. L← Pt

5. sort L by program indices and then by increasing order of positions

6. let ≤ represent the overall order in L

7. while ∃(Pi, Pj) ∈ L

8. let (Pp, Pq) be the first maximal cluster in L

9. S ← S ∪ {((Pp, Pq), |(Pp, Pq)|)}

10. L← L− {Pk ∈ L | pk ≤ pq}

11. sort S by decreasing order of cluster sizes

12. while ∃((Pi, Pj), |(Pi, Pj)|) ∈ S

13. M ← M ∪ {(Pp, Pq)} where |(Pp, Pq)| is a max. cluster in S

14. In the previous line, we choose one arbitrarily if the max. is not unique

15. S ← S − {((Pp, Pq), |(Pp, Pq)|)}

16. k ← k + |(Pp, Pq)| − 1

17. if k ≥ x return M

18. return M

Theorem 3 The set S at line 11 in MCL(x) corresponds to the maximum possible number

of clusterings.

Proof: Omitted for brevity. �

20

To simplify analysis, we neglected the possibility of interaction during clustering. However

this does not affect the performance or correctness of our algorithm. Suppose γ interactions

occur during clustering, we can handle them by vacating γ arbitrary streams in the system

that are not being clustered currently and handle the interactions with these channels. The

vacated streams are transferred on to content insertion channels. We also invoke EMCL(γ)

to release γ channels to restore the channels that were vacated. If however, γ channels are

not available this represents an overload condition that cannot be handled by clustering and

this condition is handled in Case 3 by means of time-sharing available channels.

Case 3 :

If total load after clustering is marginally higher than the total bandwidth after failure, we

can increase the virtual bandwidth of the system by switching clients to content insertion

channels in rotation. This is basically time sharing of available channels. The situation is

analogous to a multiprocessor system where the number of processes slightly exceeds the

number of processors and therefore the percentage of time that each process is idle is small

and the interval between idle periods is large. With this technique, there is a risk of stream

thrashing, that is, when clients are vacated to content insertion channels very often.

In the same way that processes spend more time swapping than in computation when

an operating system thrashes, during stream thrashing the users “feel” that they are getting

more inserted content than the actual program being watched. Therefore the Case 3 overload

problem is one in which we determine if it is possible to handle the overload by time sharing.

This technique is also suited to handle transient overload arising when a lot of clients interact

simultaneously.

When used in conjunction with Case 2, all streams that are currently being clustered

should not be part of time-sharing. Suppose the system can support X channels over and

above those which are being clustered. Let x streams be the residual overload which means

we need a virtual bandwidth of X+x streams out of a real bandwidth of X streams. Suppose

Tadspacing is the minimum time interval between two content insertion periods for any user.

Let us also neglect prior content insertion if any. Time sharing involves vacating x streams

in rotation and the cycle completes approximately in time, Tcycle = (X + x)/x. Overload

can be handled without stream thrashing provided Tcycle ≤ Tadspacing. If this is violated, we

have the scenario outlined in Case 4.

Case 4 :

If we determine that stream-thrashing is imminent, by applying the analysis in Case 3, it is

21

still possible to recover from the overload gracefully, provided we can reconfigure spare servers

into the system to handle the overload before stream-thrashing becomes apparent. If the

time to reconfigure a spare server is Tconf the system can recover gracefully if Tconf ≤ Tcycle.

If spare servers cannot be configured, the overload cannot be absorbed completely and some

streams must be dropped.

4 Discussion

If an interval caching policy [4] is implemented on each server, the stream allocation strategy

might try to optimize cache usage by placing mergeable streams on the same server. Unfortunately

these streams share the same fate in the event of server failure. This reduces the possibility

of channel reclamation and therefore overload recovery. This situation can be avoided

by allocating streams that can be clustered across different servers. While this may be

suboptimal from the caching perspective, it does not affect gains from clustering and will

improve overload tolerance. As an alternative to content insertion channels, clips for insertion

could be stored entirely in the cache.

In our paper live transmissions are irrelevant for the following reason. We need only

one channel for each live broadcast. Streams which are at any temporal skew from the live

broadcast are not “live” by definition. Assuming content is being spooled, replays would be

permissible within the content that has been spooled. This spooled content represents just

another program in the system for all practical purposes.

Although with rate adaptive merging, it is possible to decelerate the rate of the leading

stream, it is not practical when there are a large number of trailing streams that we want

to cluster with it. Also, practical considerations favor that we handle only the normal and

accelerated content progression rates. In the introduction we stated that merging involves

processing overheads. A practical solution for supporting rate adaptive merging of streams

from content stored in a single format with negligible processing overhead for MPEG encoded

streams is proposed elsewhere. We can therefore justify the use of merging to perform fine-

grained clustering.

Clearly, content insertion improves on merging as resources are freed earlier than merging

as described in Section 2.4. The other advantage is the use of ad revenues to offset the cost to

the user. In this case the ads are also subsidizing costs in an entirely new way by permitting

aggregation. A third advantage is that the technique can be applied to schemes other than

22

merging. Content insertion techniques can also be applied to handle transient overload

phenomena. Interactions cause clients to break-away from their groups, defeating the gains

that are made via batching [5]. Since each break-away claims a new channel, with a finite

probability, the system can be depleted of all channels. This causes future interactions to

block. The clustering algorithm described can be used to recover resources. Some of the

criteria that can be used to determine the events that trigger the clustering algorithm include

:

• A high degree of interaction in the whole system.

• A high degree of interaction in a given movie. This is a refinement to the above as

interactions in less popular movies do not trigger the algorithm.

• The existence of several streams for the same movie. This is a bad choice for a trigger

because there can be several streams running at large skews that cannot be merged.

• The occurrence of an interaction block. However an aggressive scheme will prefer a

preventive approach over this reactive approach.

Clustering involves degradation of quality of service to the customer and it is necessary

that the clustering policy is fair to all the customers. Therefore, the content-insertion policy

must ensure that each customer receives no more than the maximum allowed advertisement

time (ad-dosage) and no less than a minimum ad-dosage so that advertising revenue objectives

can be satisfied. Customers should get an equitable distribution of the total ad-dosage. Most

importantly, customers should experience no less than a specified minimum period between

advertisements. If this is violated on average, then it is an indication of stream-thrashing in

the system. Finally we note that it is reasonable to implement an overload recovery scheme

that avoids Case 2 in the interest of simplicity and handles overload directly using Case 3

and Case 4. However, Case 2 is attractive as it can handle a higher degree of overload and

represents a potential mechanism to increase system utilization during peak loads.

Since merging and content insertion result in service degradation, we define a user penalty

metric which is composed of three different components : the duration of inserted content

that the user must tolerate, the duration that content is delivered at an altered rate, and

the interval between two content insertion periods. Rate adaptation can be done without

significant loss of perceived quality while content insertion is clearly obvious. Users are

sensitive to the frequency of content insertion and it is desirable to space them as widely

apart as possible. Therefore the components are weighted differently to reflect this fact.

23

The penalty on the overall system is the average penalty for all users in the system and

the objective is to minimize this quantity while trying to maximize the number of streams

supported. Fairness considerations require that the variance in user penalty among users be

as low as possible. We can ensure that constraints for all users are met by pessimistically

scheduling the constraints. In other words, we can make aggregation and vacation decision

on groups based on constraints corresponding to the most limiting users in the group.

The penalty function is given by g : |Ut| → Z+

0 , where Z+

0 is the set of non-negative

integers. We assume a digital system in which time is counted in discrete steps. For the

given user Uj, let Tins,i, Tmer,j and Tgap,k respectively denote the duration of the ith content

insertion, the duration of the jth merging interval and the gap between the kth and k + 1th

content insertions. The penalty function is then defined by,

g(Uj) = c0 ∗
∑

i
Tins,i + c1 ∗

∑
j
Tmer,j + c2 ∗

∑
k
(1/Tgap,k). (6)

Server performance is indicated by the maximum number of clients that can be supported

by the system for a given average client penalty averaged over all clients in the system. The

objective is to minimize Σt(
∑

Uj∈Ut
g(Uj)/|Ut|).

Other useful indicators are the time to recover from overload and the packing density

which is the average of the ratio of the number of clients to the number of streams. Since

scheduling is cyclic in most continuous media servers [1], each data point is a single scheduling

cycle. A high packing density means that we can increase the number of clients and hence

the revenue. On the negative side, it also means a higher chance of transient overload. It

is possible to honor per-user penalty by making each group adopt the constraints of the

most limiting user in the group. However this may not provide the globally optimal system

utilization. In an earlier section, we analyzed the extent of overload recovery that can be

achieved within a given maximum time interval. Some per-user constraints may be violated

during overload since the recovery algorithms do not evaluate the user penalty function.

However we can pre-filter the streams for which constraints may get violated and take them

out of the scope of the recovery algorithms.

5 Summary

Overload recovery in CM servers differs from that in conventional servers due to the requirement

of continuity in playout. In this paper we showed that clustering by merging and content

24

insertion can be applied to provide graceful recovery and overload tolerance on failure in CM

servers. We proposed a procedure which can handle different degrees of overload efficiently

and in a practical manner. We also provide a linear time algorithm to determine whether

clustering can release the required amount of bandwidth. We also showed how classical

ideas of time-sharing in multiprocessor systems can be applied to handle transient overload

phenomena. We have presented a linear time algorithm which determines the maximum

number of clusterings possible within a fixed recovery period.

We have discussed how content insertion when applied to resource reclamation and

overload recovery can subsidize user costs in an entirely novel and significant way. While the

domain of discourse in the paper is overload scenarios in clustered CM servers, the techniques

proposed can easily be adapted to other domains such as congestion or failure in the network.

References

[1] D. Anderson, Y. Osawa and R. Govindan, “A File System for Continuous Media,” ACM

Transactions on Computer Systems, Vol. 10, No. 4, November 1992, pp. 311-337.

[2] S. Berson, L. Golubchik and R. R. Muntz, ”Fault Tolerant Design of Multimedia

Servers,” ACM SIGMOD International Conference on Management of Data, San Jose,

CA, USA, May 1995, pp. 364-375.

[3] T. Chiueh and R. H. Katz, “Multi-Resolution Video Representation for Parallel Disk

Arrays,” Proceedings of ACM Multimedia’93, Anaheim, CA, USA, August 1993, pp.

401-409.

[4] A. Dan, D. M. Dias, R. Mukherjee and D. Sitaram, R. Tewari, “Buffering and Caching

in Large-Scale Video Servers,” Compcon 95, San Francisco, CA, USA, March 1995, pp.

217-224.

[5] A. Dan, P. Shahabuddin, D. Sitaram and D. Towsley, “Channel Allocation under

Batching and VCR Control in Video-On-Demand Systems,” Journal of Parallel and

Distributed Computing (Special Issue on Multimedia Processing and Technology), Vol.

30, No. 2, November 1995, pp. 168-179.

[6] L. Golubchik, J. C. S. Lui and R. R. Muntz, “Reducing I/O Demand in Video-On-

Demand Storage Servers,” SIGMETRICS ’95/Performance ’95 Proceedings, Ottawa,

Canada, May 1995, pp. 25-36.

25

[7] J-. P. Nussbaumer, F. Schaffa, “Impact of Channel Allocation Policies on Quality of

Service of Video on Demand over CATV,” Multimedia Tools and Applications, Vol. 2 ,

Kluwer Academic Publishers, 1996, pp. 111-131.

[8] B. Ozden, R. Rastogi, P. Shenoy and A. Silberschatz, “Fault-tolerant Architectures

for Continuous Media Servers,” ACM SIGMOD International Conference on the

Management of Data, Montreal, Canada, June 1996, pp. 79-90.

[9] R. Tewari, D. Dias, R. Mukherjee and H. Vin, “High Availability for Clustered

Multimedia Servers,” Proceedings of International Conference on Data Engineering,

New Orleans, USA, February 1996.

[10] H. M. Vin, P. J. Shenoy and S. Rao, “Efficient Failure Recovery in Multi-Disk

Multimedia Servers,” Proceedings of the Twenty-Fifth Fault Tolerant Computing

Symposium, Pasadena, CA, June 1995, pp. 12-21.

26

