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Abstract – Supporting independent VCR-like interactions in true video-on-demand sys-

tems is resource intensive and in the worst case requires a separate channel for each user.

A variety of techniques have been proposed to reduce resource requirements by aggregating

users into groups. Clustering of users by bridging the temporal skews between them is one

such service aggregation technique. We present some recurrent problems in stream cluster-

ing and investigate optimal solutions with the main goal of minimizing average bandwidth.

We also show that for dynamic interactive scenarios where streams can break away from

clusters, given perfect prediction, the problem is isomorphic to the Rectilinear Steiner Min-

imal Arborescence (RSMA) problem; the complexity of which remains open and for which

no polynomial-time algorithms are known. Because more general problems of interest are

NP-Complete, we investigate and show results of performance evaluations of heuristic and

approximate algorithms for this case. These algorithms are general across a large class of

implementation architectures and aggregation techniques. Our simulations show that for a

moderately interactive user population of 1250 at steady state, the RSMA algorithm is able

to reclaim up to 33% of the bandwidth. Thus the static case optimal solution also performs

as an excellent heuristic in the dynamic case.

Keywords: Dynamic service aggregation, clustering algorithms, content insertion, video-

on-demand.
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1 Introduction

Supporting VCR-like interactions in true-video-on-demand requires the allocation of a chan-

nel to each interactive user. In the worst case, the system must be provisioned with a

dedicated channel for each user.

Several service aggregation techniques for VoD have been presented in the literature.

They include batching [3], rate adaptive merging [6], server caching [17], client caching or

bridging [1] and chaining [16] (a limited form of distributed caching), content insertion [12]

and content excision.

Aggregation schemes primarily fall into the two categories of clustering and caching.

Clustering minimizes end-to-end bandwidth requirement by bridging the temporal skew be-

tween streams carrying the same content. This can be done in several ways: by rate adaptive

merging [6], by content insertion [12] or by content excision. One can view stream clustering

as a synchronization problem where the leading and trailing streams are out of “sync” and

we can bridge the skew by changing the relative content progression rates. One can also view

this as a control problem where the skew is viewed as an error which is to be minimized, for

example, by setting the leading stream back via content insertion.

Rate adaptive merging of two streams can be achieved by accelerating the trailing stream

by about 7%, towards the leading stream until both the streams are at the same position in

the program [11]. Then all the users on those two streams can be served by a single stream.

Caching schemes minimize the number of streams required on the bottleneck path (typ-

ically storage) by buffering the interval between streams and playing some streams out of

the buffer. It is also desirable to reduce the buffer requirement, which is dependent on the

lengths of the intervals between streams carrying the same content. Therefore, bridging

the skew and/or reducing the number of streams by clustering can also reduce the memory

requirement of a caching scheme.

Due to the long playout time and high density access characteristics of continuous media,

we see that caching and clustering are related. A continuum of aggregation schemes which lie

between pure caching and pure clustering exist. Tsai and Lee [15] explore this relationship

in the near-VoD scenario.

Therefore, we can extend solutions for clustering to buffer management and vice versa.

In this paper, we restrict our attention only to clustering schemes. Though presented in a
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VoD setting, a number of these results are applicable to other settings like personalized news

delivery over polychannel architectures as in Gifford [5].

The aforementioned schemes take advantage of the fact that typical content access distri-

butions are skewed. During peak demand, there is a high density of access – a large number

of users request the same content but with small temporal skews. Aggregation schemes are

attractive in VoD systems since peak demands far outstrip available bandwidth.

Since resource sharing by aggregating users is a promising paradigm for VoD systems

supporting large user populations, it is useful to study the inherent complexity. Irrespec-

tive of whether we are trying to use rate adaptive merging or content insertion or using

“shrinking” to reduce buffer usage for caching, the underlying clustering problem remains

the same. In this paper, we make a systematic approach to formulate these clustering prob-

lems and examine if optimal solutions exist. These algorithms are general across a large

class of implementation architectures as well as aggregation techniques.

From a performance engineering standpoint, one must not lose sight of the fact that

simpler solutions while provably sub-optimal can at times be preferable due to simplicity,

elegance or speed. Often, they can be necessitated by the fact that optimal solutions are

computationally expensive or intractable. In such cases, the engineering approach is to seek

good approximate or heuristic alternatives that provide near-optimal solutions. With this

in mind, we present optimal solution approaches and also investigate when such sophisti-

cated algorithms are warranted by the application under consideration. The other issue is

to explore how far the gains from an optimal solution in the static case, where the clusters

cannot break away once they are formed are being held in dynamic scenarios. Our perfor-

mance results can be readily applied to the related capacity planning and design problem –

given an interaction plus arrival rate and distribution, what should the design capacity be,

in number of streams, of a video network which actively uses service aggregation?

We transform the static clustering problem (with the objective of minimizing average

bandwidth) to the RSMA-slide problem2. We show that by periodically recomputing the

RSMA-slide with small a period, we can reclaim up to 33% of channel bandwidth when

there are 1250 interacting users in the system at steady state. We compare the RSMA-

slide algorithm with other heuristic approaches and find it to be the best overall policy

for varying arrival and interaction rates of users. We also find that under server overload

situations, EMCL-RSMA (forming maximal clusters followed by merging by RSMA-slide in

2An RSMA-slide is essentially an optimal binary tree.
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the clusters) is the best policy as it releases the maximum number of channels in a given

time budget, consuming minimum bandwidth during the process.

The rest of the paper is organized as follows. We formulate the clustering problems in

Section 2 and analyze optimal algorithmic solutions. In Section 3 we present the results of

simulations of heuristic and approximate algorithms for clustering. In section 4 we conclude

with a set of recommendations for algorithms for use in stream clustering in interactive VoD

systems.

2 Stream Clustering Problems

In this section, we characterize the space of video stream clustering problems by formulating

a series of sub-problems. We will demonstrate that problems of interest are open; however,

the formulation lends itself to heuristic solution approaches. In the next section, we present

effective heuristic solutions to these problems.

2.1 Clustering Under a Time Constraint

Let us consider the problem of recovery from overload resulting from front-end processor fail-

ure in a clustered3 video server. The objective is to recover the maximum number of channels

possible within a finite time budget, by clustering streams. We assume that interactions are

not honored during the recovery period since the system is already under overload.

Maximizing channel recovery is desirable since it enables us to restore service to more

customers and possibly to admit new requests. Recovery within a short period of time

is necessary since customers will not wait indefinitely on failure. It is possible to mask

failures for a short period of time by delivering secondary content like advertisements. This

period can be exploited to reconfigure additional resources. However reconfigurability adds

substantially to system costs and additional resources may not be generally available.

Optimal stream clustering under failure can be solved easily in polynomial time and a

linear-time algorithm using either content insertion or rate adaptive merging can be found

in [12]. This algorithm, called EMCL (Earliest Maximal CLuster) starts from the leading

stream and clusters together all streams within the time budget, then repeats the process

3Here “clustered” refers to a server architecture where multiple front-end processors enhance delivery
throughput of content from shared storage.
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by starting from the next stream ahead until the trailing stream is reached. A more general

class of uni-dimensional clustering problems has been shown to be polynomially solvable [7].

Three points are worth noting here. Firstly, the algorithm presented in [12] can be applied

when both content insertion and rate adaptation are used. A little thought shows that the

number of channels recovered by the algorithm is non-decreasing with increase in the time

budget. Using both techniques has the same effect as increasing the time budget when using

one technique alone. Therefore we can apply the same algorithm. We will see later that this

property does not generalize to other optimization criteria.

Secondly, this algorithm is not affected if some leading streams will reach the end of the

movie before clustering. By accelerating all streams that are within the time budget from

the end of the program and then computing the clustering for the remaining streams, we

can achieve an optimal clustering.

Thirdly, iterative application of this algorithm does not provide further gains in the

absence of interactions, exits or new arrivals. In the dynamic case, the average bandwidth,

in number of channels, used during clustering is of consequence. We consider this average

bandwidth minimization constraint and dynamicity in the following sections.

2.2 Clustering to Minimize Bandwidth

Clustering to minimize the average bandwidth requirement, in number of channels, is more

applicable from a service aggregation perspective. As a special case of this problem let us

consider the case in which we have a snapshot of stream positions at a given instant and we

wish to construct a merging schedule that uses the minimum average bandwidth. Further

let us ignore arrivals, exits and break-aways due to interaction. This problem has been

considered by Lau et al. [10] for a heuristic solution only.

We find that this problem can be readily transformed into a special case of the Rectilinear

Steiner Minimal Arborescence (RSMA) problem, which is defined by Rao et al., [14]:

Given a set N of n nodes lying in the first quadrant of E2, find a minimum length

directed tree (Rectilinear Steiner Minimal Arborescence, or RSMA) rooted at the

origin and containing all nodes in N , composed solely of horizontal and vertical

arcs oriented from left to right and from bottom to top.

Unfortunately the complexity of the RSMA problem is still open and Rao et al. [14] present a
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O(n log n) approximation algorithm which gives a solution within twice the optimal. Known

exact algorithms have an exponential worst-case complexity (see Leung et al. [8]).

The transformation is illustrated in Figure 1 with a minor difference that an up arborescence4

is used instead. In the figure on the left, the purple dots denote the stream positions at the

time instant corresponding to the beginning of the snapshot. Each stream has a choice of

either going at a normal speed (denoted by red dotted lines) or at an accelerated speed

(denoted by blue dotted lines). In the optimal tree, the absolute trailer has to go fast and

the absolute leader has to go slow all the time and the two lines corresponding to them

will meet at the root. In Steiner tree terminology the purple points (∈ N) are called sinks.

The RSMA tree is denoted in the figure on the right as a rooted directed tree (the arrow

directions have been reversed for a better intuitive feel).

Note that the transformation leads to a special case of the RSMA problem where the

sinks form a slide, which is a configuration where there is no directed path from one sink to

another. For this special case, the RSMA is an optimal binary tree and can be computed

using a O(n3) dynamic programming algorithm [14]. We call it the RSMA-slide in this

paper. Therefore, we conclude that the reasoning given by Lau et al. in [10] is incorrect,

since the static clustering problem has an optimal polynomial time solution.

Time

Position

Time

leader

leader

Figure 1: Minimum Bandwidth Clustering

Aggarwal et al., [2] present the optimal binary tree formulation to this problem and

also provide a O(n3) dynamic programming algorithm. Although optimal binary trees are a

4A directed tree with arcs directed towards the root.
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direct way to model this problem, the RSMA formulation offers more generality as we shall

explain in later sections.

Minimum bandwidth clustering can be used as a sub-scheme to clustering under a time

budget, so that channels are released quickly thereby accommodating some interactivity. In

a dynamic scenario, where cluster re-computation is performed on periodic snapshots, this

technique can speed up computations. The time constrained clustering algorithm has linear

complexity and the dynamic programming algorithm of cubic complexity needs to be run on

a smaller number of streams. Simulation results are reported in Section 3.

2.3 Clustering with Arrivals

Let us introduce only stream arrivals to the preceding problem and ignoring stream exits

and interactions. Stream exits can occur due to the ending of a movie or a user quitting from

a channel which has only one associated user. Suppose we have a perfect predictor of new

stream arrivals, the problem again transforms to the RSMA-slide formulation. Although the

sinks do not lie on a straight line, they still form a slide. E.g., the purple points in Fig. 2

form a slide. Therefore, the RSMA-slide algorithm of Section 2.2 can be used here.

Alternately, we can batch streams for a period equal to or greater than the maximum

window for merging. In other words, the users that have newly arrived can be made to wait

for an interval of time for which the previously arrived streams are being merged. Although

this can reduce the problem to the preceding one, in practice, this can lead to loss of revenue

from customer reneging.

Aggarwal et al. [2] instead use a periodic re-computation approach with an initial greedy

merging strategy. They show that if the arrival rate is fairly constant, a good re-computation

interval can be determined. If a perfect predictor, advance reservations for example, were

available, then by using the exact RSMA-slide algorithm, we can do better.

2.4 Clustering with Interactions

Here we show how a highly restricted version of the problem with certain unrealistic as-

sumptions is transformable to the RSMA problem. We assume the jump type interaction

model i.e., a user knows where to fast forward or rewind to and resumes instantaneously.

Also assume that the leading stream does not exit and that interactions do not occur in
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singleton streams (which are alone in their clusters). Above all this, if we assume that a

perfect prediction oracle which predicts the exact jumps, exists, we can see that the problem

of merging all the streams using minimum average bandwidth is isomorphic to the RSMA

problem, which is open and thus has no polynomial time solution.

The main point of the above argument is that even with all the above unrealistic assump-

tions about streams, the problem is open; the general problem is harder and is also open

from the optimality considerations. As we will see in Section 3, certain heuristic approaches

based on the static RSMA algorithm perform reasonably well in practice.

2.5 Clustering with Arrivals, Exits and Interactions

In this subsection, we consider optimal stream clustering with new stream arrivals and VCR

interactions. Let us consider an oracle which can perfectly predict arrivals and interactions

over large periods. Fig. 2 shows a transformation to the RSMA problem in the general case.

The purple points on the horizontal line at the bottom denote the predicted arrivals and the

green points in the interior of the grid depict predicted interactions. Also, the assumptions

of Section 2.4 are assumed to be valid. The problem is to find a schedule which merges

all streams, taking into account all the predicted arrivals and interactions, and consumes

minimum bandwidth during the process. We can easily see that solving this problem is again

isomorphic to solving the general RSMA problem which unlike the RSMA-slide algorithm

does not have a polynomial time solution.

Stream exits and interactions by a user, alone on a stream, result in truncation and

deletion of streams respectively, and cause the RSMA tree to be disconnected and form

a forest. The above model is not powerful enough to capture these scenarios. Perhaps a

generalized RSMA forest can be used to model these situations. However, the RSMA forest

problem is at least as hard as the RSMA problem and thus no optimal solution exists.

An approximation algorithm for RSMA which performs within twice the optimal is avail-

able using a plane sweep technique. But in a practical situation where there is no perfect

prediction oracle, knowing the arrivals and interactions beforehand is not feasible. Therefore

one doesn’t have much choice other than taking periodic snapshots of the system. A point

to be noted is that there is no optimal window for recomputing optimal clustering based on

periodic snapshots because the problem doesn’t have an optimal polynomial time solution

even with perfect prediction.
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Figure 2: Clustering under Perfect Prediction

Also note that causal event driven cluster re-computation will perform worse than the

perfect oracle based solution. For any stochastic solution to be optimal and computationally

tractable, the RSMA must be solvable by a low order polynomial time algorithm. It is more

advisable to seek stochastic bounds since the worst case bound cannot be guaranteed better

than twice optimal with perfect prediction unless the RSMA problem is solved in polynomial

time.

Note that an algorithm with time complexity O(n3) may be expensive for an on-line

algorithm and it is worthwhile comparing it with its approximation algorithm which runs

faster, producing results within twice the optimal in the worst case. In the simulations section

(Section 3), we compare both the algorithms under dynamic situations. Rao et al. [14] give

a polynomial-time approximation algorithm based on a plane-sweep technique which gives

an RSMA within twice the optimal. We present this algorithm here in pseudocode form

(Fig. 3), which we use later for simulations.

When the algorithm terminates, we get the heuristic tree. Since we can store the points

in a heap data structure, we can perform Step 3 in O(log n) time and hence the total time

complexity is O(n log n).

The fact that the static framework breaks down in the dynamic scenario is not surprising.

Wegner [19] suggests that interaction is more powerful than algorithms and such scenarios

may be difficult to model using an algorithmic framework.
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Algorithm RSMA-heuristic(S:sorted stream list)

1. Place the points in S on the RSA grid

2. while (S 6= φ)

3. Find 2 nodes p, q ∈ S such that
‖parent(p, q)‖ is maximum
(Note: ‖(x, y)‖ = x + y)

4. S ← S − {p, q} ∪ parent(p, q)

5. Append the branches parent(p, q) → p and
parent(p, q) → q to the RSA tree.

6. end

Figure 3: Approximation Algorithm for RSMA

2.6 Harder Constraints and Heuristics

In practice, stream clustering in VoD would entail additional constraints. We list a few of

them here :

• Limits on total content insertion permissible per customer

• Limits on total duration of rate adaptation per customer

• Maximum duration and frequency of content insertion per customer

• Critical program sections where content-insertion is prohibited

• Critical program sections where rate adaptation is prohibited

• Frequency of rate changes per customer

• Continuous rather than “jump” interactions

Some generalizations involve multiple customer classes or multiple adaptation rates with

different costs although the latter is impractical from a retrieval and delivery perspective.

The inherent complexity of computing the optimal clustering under dynamicity, made

even harder by these additional constraints, warrants search for efficient heuristic and approx-

imation approaches. We propose some heuristic approaches which are worthy of experimental

evaluation.
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• Periodic Periodically take a snapshot of the system and compute the clustering. The

period is a fixed system parameter determined by experimentation. Different heuristics

can be used for the clustering computation :

– Recompute RSMA-slide (optimal binary tree) using O(n3) dynamic programming

algorithm.

– Use the O(n log n) RSMA heuristic algorithm.

– Use the O(n) EMCL algorithm to release the maximum number of channels pos-

sible.

– Follow EMCL algorithm by RSMA-slide, heuristic RSMA-slide or all merge with

leader.

• Event-driven Take a snapshot of the system whenever the number of new arrivals or

interactions exceeds a given threshold. As a refinement the count can do this on a per-

movie basis, that is, recompute for that movie if the number of arrivals and interactions

exceeds a threshold. Recomputing on every interval will lead to sub-optimal results.

• Adaptive Adapt the re-computation period based on interactivity and the state of

the system.

• Predictive Predict arrivals and interactions based on observed behavior. Compute

the RSMA based on predictions.

• Policy iteration Based on observed system behavior over a large period of time,

compute the best policy for each set of circumstances. Choose the best policy for the

current circumstance.

3 Simulations

In this section, we describe our simulations of the clustering and merging algorithms which

we have described in the first half of the paper, and also compare them with some heuristic

algorithms which will be described in this section. We describe simulations of algorithms

and heuristics for only rate adaptation in this section.

11



3.1 Objective

Some of the algorithms described in Section 2 are optimal in the static case i.e in absence of

user interactions. Also, no optimal algorithms are known for the dynamic scenario in which

users are arriving into the VoD system, interacting with it and departing from it. However,

the behavior of such a system upon the application of our clustering and merging techniques

can be studied by simulations. In these simulations, we shall study the gains offered by

our ensemble of techniques, under varying conditions. We will also attempt to answer the

following questions:

• In the non-interactive situation, which is the best policy?

• Which is the best policy under dynamic conditions in the long run?

• What is effect of high arrival and interaction rates on these algorithms?

• What algorithm should be used when facing server overload?

3.2 The Simulation Setup

We treat our simulation as a discrete-time control problem. As it has been outlined in Section

2, there are various ways in which we can control the system: apply control with a fixed

frequency, apply control with a fixed event frequency or adapt control frequency depending

on the event frequency, which is the hardest to implement. In this work, we have considered

only the first method of applying control periodically and have left the remaining as a part

of future work.

The setup consists of two logical modules: a discrete event simulation driver and a

clustering unit. The simulation driver maintains the state of all streams and generates

events for user arrivals, departures and VCR actions (fast-forward, rewind, pause and quit)

with inter-event times obeying the exponential probability distribution. In this study, we

have not considered a bursty model of interactions. A merging window (also called the

re-computation period) is an interval of time within which a clustering algorithm attempts

to release channels. Once in every re-computation period, the simulation driver conveys

the status of each stream to the clustering unit and queries it after every simulation tick

to get the status of the streams according to the specified clustering algorithm. It then

advances each stream accordingly. For instance, if the clustering unit reports the status
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of a particular stream to be accelerating at a given instant of time, the simulation driver

advances that stream at a slightly faster rate of 16

15
times that of a normal-speed stream.

The clustering unit gets the status of all running streams from the simulation driver,

computes and stores the complete merging tree for every cluster in its internal data structures

until it is asked to recompute the clusters. On this basis, it supports querying on the status

of any running non-interacting stream by the simulation driver after every simulation time

unit.

3.3 Assumptions and Variables

The variables in our simulations are the following: number of movies, M ; movie popularities

obey Zipfian distribution, length of a movie, L, which is 30 minutes in these simulations, re-

computation window size, W , mean movie request rate, λarr, mean interaction rate, λint, and

mean interaction duration, λdur, which is taken to be 5 sec for simplicity in our simulations;

all λ’s are exponentially distributed.

We have simulated three types of interactions: fast forward, rewind and pause. λint is a

individual parameter which denotes the rate of occurrence of each of the above interaction

types. E.g. if λint = 0.02 sec−1, it means a fast forward (or a rewind etc.) happens in the

system once every 50 seconds. For simplicity we have kept λint the same for each type of

interaction.

The size of the complete user pool does not play an important role in our simulations for

the dynamic scenario because even in real life, all the users in the complete pool are never

in the system at the same time. Only λarr and λint determine the number of users in the

system at a given time. So, we have assumed a reasonably large size for the user pool at

U = 2500. Also, in this work, we do not study the probability of blocking of a requesting

user as we assume that the capacity of the system is greater than the number of occupied

channels.

We have assumed that the effective frame rate of a normal speed stream is 30 fps and

that of an accelerated stream is 32 fps; this can be achieved in practice by dropping a B-

picture from every group of pictures, keeping the streaming and playout rates at 30fps. Also,

a user may fast forward/rewind at 5X normal speed. Finally we have kept our simulation

granularity at 1 sec and the simulation duration at 8000 seconds.

We investigated the channel and bandwidth reclamation rates for each clustering algo-
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rithm and compared the results (Section 3.5).

3.4 Clustering Algorithms and Heuristics

We simulated six different aggregation policies and compared them:

EMCL-RSMA Clusters are formed by the EMCL algorithm and then merging is performed

in each cluster by the RSMA-slide algorithm (Section 2).

EMCL-AFL Clusters are formed by the EMCL algorithm and then merging is performed

by making all the trailers in a cluster chase their cluster leader.

EMCL-RSMA-heuristic Clusters are formed by the EMCL algorithm and then merging

is performed by a RSMA-heuristic which is computationally cheaper than the RSMA-

slide algorithm.

RSMA The RSMA-slide algorithm is applied to the entire set of streams over the full length

of the movie, periodically without performing EMCL for clustering.

RSMA-heuristic The RSMA-heuristic algorithm is applied to the entire set of streams

(over the full length of the movie) periodically without performing EMCL for clustering.

Greedy-Merge-heuristic Merging is done in pairs starting from the top (leading stream)

in the sorted list. If a trailer cannot catch up to its immediate leader within the

specified window, the next stream is considered. At every merge, interaction or arrival

event, a check is made if the immediate leader is a normal speed stream. If that’s true

and merging is possible within a specified window, the trailing stream is accelerated

towards the immediate leader. This process is continued throughout the window.

GM is similar to Golubchik’s heuristic [6] apart from the fact that it re-evaluates the

situation at every interaction event too.

The first three policies release the same number of channels at the end of a certain period

because they use the EMCL algorithm for creating merge-able clusters. But, the amount of

bandwidth saved in the merging process is different in each case. EMCL-RSMA is proved to

be optimal over a given merging window, so it saves the maximum bandwidth. EMCL-AFL

is a mere heuristic and could perform badly in many situations. EMCL-RSMA-heuristic

on the other hand uses an approximation algorithm for the RSMA-slide that guarantees a

solution within twice the optimal. [14] Although our problem falls within the slide category
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and has an O(n3) exact solution, we wanted to experiment with the approximation algorithm

which runs in O(n log n) time.

3.5 Results and Analysis

In this subsection, we study clustering (channel reclamation) gains and merging (bandwidth

reclamation) gains due to the previously discussed algorithms.

We have classified the simulations into these two categories:

3.5.1 Snapshot Case

This is applicable in overload situations, i.e., at a certain point of time when the server

detects an overload, it wants to release as many channels as possible in a static merging

window (i.e., there are no user interactions in this period), consuming minimum bandwidth

at the same time. First, we vary the window size for a fixed number of users. In Fig. 4(a),

we can see that the clustering gain increases as W is increased. We can also see that EMCL

outperforms GreedyMerge over any static window of size W . In Fig. 4(b), we have compared

the bandwidth gains due to the three merging algorithms that we have talked about earlier.

We observe that merging gain increases with increase in W . We also observe that over

any static window in the graph, the gains due to EMCL-RSMA and EMCL-RSMA-heur

are almost identical! Although EMCL-RSMA is provenly optimal over a static window, the

RSMA heuristic does as well in most situations. (the reason for this may be attributed to the

parameters of the particular inter-arrival distribution) Although cases can be constructed

where the heuristic produces a result which is twice the optimal value, in most practical

situations it performs as well as the exact algorithm at a lower computational cost.

Next, in Fig. 4(c), we vary the number of users for a fixed window size (100 secs) and

compare GM and EMCL. Clearly, EMCL performs better than GM and their clustering gains

remain almost constant throughout the curves although the gap between the two seems to

increase as U increases. In Fig. 4(d), we can again see that EMCL-RSMA and its heuristic

version perform equally well and clearly reclaim more bandwidth than EMCL-AFL. Even in

this case, the percentage gains seem to remain constant as U increases.
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Figure 4: Snapshot Case

Table 1: Arrival and Interaction Patterns

Arrivals / Interactions NO LOW HIGH
LOW λarr = 0.1, λint = 0 λarr = 0.1, λint = 0.01 λarr = 0.1, λint = 0.1

LOW-MEDIUM λarr = 0.3, λint = 0 λarr = 0.3, λint = 0.01 λarr = 0.3, λint = 0.1
HIGH-MEDIUM λarr = 0.7, λint = 0 λarr = 0.7, λint = 0.01 λarr = 0.7, λint = 0.1

HIGH λarr = 1.0, λint = 0 λarr = 1.0λint = 0.01 λarr = 1.0, λint = 0.1
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3.5.2 Dynamic Case

This is the general scenario where the users come into the system, interact with the system

and leave. Here, we simulate over time equivalent to about 41

2
lengths of the movies.

First, we study the behavior of cumulative channel reclamation gains due to the above

algorithms as a function of time for cases with varying rates of user arrival and interactions.

We have considered 12 different arrival-interaction patterns as shown in Table 1.

For each of the above cases and for each of the six different aggregation policies, we

ran the simulations for eight different re-computation window sizes(W ): 10, 25, 50, 100,

200, 500, 750 and 1000 seconds. Fig. 5 shows the steady state behavior of the system for

λarr = 0.7 and λint = 0.1. We can clearly see that RSMA outperforms all other policies

by a large margin for small and medium values of W . For W = 100 sec, RSMA reclaims

about 400 channels from 1250 channels after the steady state has reached thus giving gains

of about 33%. This essentially means that for the particular type of traffic (λarr = 0.7 and

λint = 0.1), we do not need more than 850 channels to serve 1250 streams.

For smaller W , other policies on the other hand give much lesser channel gains. But as the

re-computation interval is increased, RSMA begins to suffer and EMCL based policies and

GM begin to perform well. This is because RSMA takes a snapshot of the whole system at

the beginning of a re-computation interval and advances streams according to the RSMA tree

computed from that snapshot. But in this situation where the user arrival rate is moderately

high and the interaction rate is high too, for high values of W , a lot of streams come in and

interact between two consecutive snapshots and thus the gains due to RSMA drop. On the

other hand, GM tries to reevaluate the situation at every arrival and interaction event, so it

performs very well.

Our hypothesis was that different policies will perform at their best for different values

of W and indeed, we found that to be true. Fig. 6 shows how the channel gains vary

with the value of the re-computation window. For consistency, we have considered the case

with λarr = 0.7 and λint = 0.1. The graphs for the other cases are similar in shape and

have not been shown due to paucity of space. In the steady state, the system has 1250

users on average. For small values of W (≤ 500 secs), EMCL based schemes and GM don’t

perform well, whereas, RSMA and RSMA-heur perform well. However, for larger values

of W (> 500 secs), EMCL based schemes and GM perform well and RSMA-heur is highly

sub-optimal. Although RSMA shows reduced gains for higher values of W , it is still better

than the EMCL based algorithms. GM outperforms all algorithms, including RSMA for
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Figure 5: Clustering in Steady State
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W ≥ 750 due to the reason mentioned in the previous paragraph. But GM is more CPU

intensive as it reacts to every arrival, interaction and merge event. In that sense, it is not

a true snapshot algorithm like the others, and is not a very scalable solution under heavy

rates of arrival and interaction although it may perform better than the other algorithms in

such situations.
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Figure 6: Dependence of Channel Gains on W

As mentioned in the last paragraph, each policy attains best results for different values

of W . RSMA performs best for W = 10 sec; GM performs best for W = 1000 secs and the

EMCL based algorithms perform best for 500 ≤ W ≤ 750. Fig. 7 plots the best channel

gain achieved by a policy for every class of traffic (see 1). In the figure, we can see 4 sets

of curves with three curves each. Each set corresponds to an arrival rate because λarr is

the most dominant factor affecting the number of users in the system. The mean numbers

of users in the system for λarr = 0.1, 0.3, 0.7 and 1 are 180, 540, 1250 and 1800 respectively.

We can easily see that the mean clustering gains increase significantly with increase in the

arrival rate.

For each of the 4 sets, we observe that the channel gains are almost identical for λint = 0

and λint = 0.01 but are less for λint = 0.1. That is not far from expectations as a high degree

of interaction causes each algorithm to perform worse. More importantly, we see that RSMA

emerges as the best overall policy. We can also see that as λarr increases, the gap between

RSMA and the other algorithms widens.

We can also see that there little difference in the gains due to EMCL-RSMA and its

heuristic counterpart, although there is a vast difference between the gains due to RSMA
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and those due to the RSMA heuristic. This is because, EMCL breaks a set of streams into

smaller groups and the EMCL-RSMA heuristic performs almost identically well as EMCL-

RSMA for smaller groups. But, in case of RSMA, the number of streams is large (since

EMCL hasn’t been applied to the stream cluster), so the sub-optimality of the heuristic

shows up.
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Figure 7: Comparison: With Best W for each Policy

From the above simulations, we can conclude the following:

• EMCL-RSMA is the optimal policy in the static snapshot case as it can reclaim max-

imum number of channels with minimum bandwidth usage during merging. Thus it is

the ideal policy for server overloads.

• For dynamic scenarios, if the number of users in the system is not too large (∼ 2000

watching 100 movies) and the rate of interaction is moderate (500 interactions in an

hour), periodically invoking RSMA with low periods gives the best results.

• In realistic VoD settings, arrival rate plays a greater role than the interaction rate (ex-

cept for interactive game settings where aggregation is not a feasible idea) High arrival

rates result in more streams in the system thus creating better scope for aggregation.

• Higher degrees of interaction result in lesser clustering gains for every algorithm.

• With increasing rates of arrival, RSMA’s edge over other algorithms increases.

• The EMCL-RSMA heuristic performs almost as well as EMCL-RSMA although the

RSMA-heuristic performs very badly as compared to RSMA.
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4 Conclusions and Future Work

In this paper, we described various optimality criteria arising in stream clustering problems

in video on demand. We gave an optimal solution for the “static clustering under a time

budget” problem which has O(n3) running time. We also showed that a restricted version of

the dynamic problem (with user arrivals and interactions) is transformable to RSMA which

is open, i.e., it is not known to be in P or NP.

We showed full scale simulations of the dynamic scenario with users entering the system,

interacting with the system and leaving the system. In the simulation setup, we ran six

different aggregation policies and compared their clustering gains in the steady state. We

observed that periodic invocation of the RSMA-slide clustering algorithm with small periods

produces best results under moderately high rates of arrival and interactions.

In future work, we propose to investigate the feasibility and complexity of distributed

clustering schemes and possible clustering together of streams served from geographically

displaced servers.

If logical channels are not independent and share a common medium like IP multi-

cast, new stream creation can impact existing streams. Specifically we have assumed QoS

in-elasticity; interaction of these algorithms in the presence of heterogeneous and layered

streams is interesting.

An important issue that remains to be resolved before clustering schemes can be deployed

in practice is seamless splicing of video frames compounded by network delays and delays

introduced by inter-frame coding as in MPEG.

In this paper, we did not study blocking of users due to depletion of channels but in any

system with a scarce resource, blocking and service denial is inevitable and its probability

has to be minimized. It will also be interesting to study how adaptive invocation of the

clustering algorithms performs under situations similar to those described in this paper.

To summarize, the main contributions of this paper are the following : (i) general formu-

lation of the stream clustering problem and solution approaches (ii) inclusion of interactions

in the model and (iii) performance of approximate and heuristic algorithms in a dynamic

scenario.
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