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Abstract– We propose a task graph based framework for modeling and execution of distributed
applications in mobile ad hoc networks. Our framework represents a distributed application by
a graph composed of nodes and edges in which the nodeslogically represent application sub-
tasks that need to be completed and the edges represent associations, with certain attributes,
between nodes. During application run-time, suitable devices that can complete the sub-tasks
and can satisfy the attributes of the associations between them are selected on-the-fly to execute
the application. New devices are selected to continue application execution if old devices become
unavailable due to mobility. Thus, we de-couple the application from a specific set of devices and
allow its execution if there is at least one suitable device in the network for carrying out each of
the required sub-tasks. In this paper, we propose an application execution protocol to realize this
vision and show simulation results which indicate that our approach is practical for environments
with low user/device mobility.
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1 Introduction

New exciting possibilities are being opened by the continual decrease in size, increase in the
quantity of processor-embedded devices that surround us, and the emergence of network enabling
technologies such as Bluetooth [1] and IEEE 802.11 [2]. In a world where any display device, be
it a PDA, a monitor, or even a projector can act as my “TV screen”, and likewise, any earphone or
speaker can act as my “radio” or “MP3 player,” new challenges need be overcome to tap into the
full potential of such environments.

Traditional operating systems and network protocols have been generally concerned with
specific memory or network addresses. While the abstraction of “address” is essential, its underlying
emphasis is on reaching aspecifichost that can complete a required task. However, with the
proliferation and multiplicity of devices that can perform similar tasks, we need a shift in focus
towards emphasizing on how to characterize an application logically and how to allow an application
component to “dynamically bind” itself to a device that can complete the corresponding task. No
longer should we be prevented from running an application when one specific device becomes
unavailable. Also, with specialized heterogeneous devices offering different services in the environment
of the user, an application may need to simultaneously request multiple services and therefore must
be able to determine the correct communication relationships required between these devices to
ensure proper execution. In addition, due to the shrinking size of the devices and added wireless
networking capabilities, device mobility, which implies fluctuating service availability, is another
issue that must be addressed in order to develop, run and support different applications in aMobile
Ad-hoc NETwork(MANET) environment.

To tackle the challenges described, we introduce aTask Graph(TG) based framework for
application development and execution in MANETs. Our TG approach is inherently distributed,
as we believe many of the applications for MANETs must be. It also de-couples the task to be
performed on any specific host, allowing an application to take advantage of the multiple devices
that are present in the environment. In addition, it supports hierarchical composability, allowing
sets of devices to be logically grouped together and be treated as a single unit essentially enabling
the network to offer new services based on existing ones. We offer support for applications built in
our TG framework by adding an intermediate layer above the routing layer, theTasklayer. Thus, a
“tele-conferencing virtual terminal” application, with its requirements of audio input/output, video
input/output and networking capabilities, need no longer be restrained to only one type of hardware
configuration (typically a networked multimedia computer). Instead, it can also be executed by a
combination of electronic devices in a home entertainment center or even by connecting a PDA, a
digital camera and a cell phone as shown in Fig. 1.

In this paper, we present an initial implementation of the “task layer” of our TG-based
approach in the network simulatorns [3]. We introduce some useful metrics to evaluate the
performance of the system and show that such approach is practical under low mobility environments.
In the next section we present related work in the area. Section 3 introduces theoretical foundations
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for the TG concept and describes the protocol implemented by the Task layer. Section 4 shows
simulation data. We conclude in Section 5 with an analysis of the data obtained and a discussion
of the conditions under which our approach performs more efficiently.

2 Related Work

Task graphs have been used in the parallel computing and scheduling literature for representing
tasks that can be splittemporally into sub-tasks and then allocated to different homogeneous
processors for reducing total completion time [4]. Our formulation of task graphs extends the
concept described above by including heterogeneous devices, and switches focus from minimizing
the completion time of distributable sub-tasks to ensuring the presence of suitable (heterogeneous)
devices that can cooperatively complete the execution of a distributed application.

The de-coupling of a service from the host providing the service is the idea behind Service
Location Protocol (SLP) [6] and Jini [7], as well as MOCA [8], which offers a Jini-like service to
mobile computing devices. Intentional Naming System (INS) [9] is a more sophisticated scheme
which attempts to capture “user intent” to find an appropriate service. It also has a late binding
feature that allows applications to bind themselves to a service and not to any specific host. While
we advocate the same de-coupling principle, we apply such a principle in building a systematic
framework in which complex distributed applications can be modeled, with the inter-relationships
of its components expressed and integrated with mobility management issues.

Both the Portolano project [10] and IBM’s Platform-Independent Model for Applications [11]
represent visions that consider applications as services provided to or task executed on behalf of
the end user, which should be independent of the specific user interface devices available. Our
work shares the same vision, and is a concrete and systematic approach that attempts to realize it.

3 A Task Graph Application Framework

Concepts and DefinitionsA deviceis a physical entity that performs at least one function such
as interaction with its physical environment, computation, or communication with other devices.
There is alink between two devices with networking capabilities when at least one device can
receive data sent from the other. A link can be unidirectional or bidirectional. A device’s capabilities
are summarized by a set ofattributes. Attributes can be static, such as the resolution of a digital
camera, or dynamic, such as the location of the camera. Aserviceis a functionality, possibly
offered by a device or a collection of cooperating devices, in which a desired output is obtained
through processing a given input data. Anode is an abstract representation of a device or a
collection of devices with a minimal set of attributes that can offer a particular service. A node is
simple when it represents a single device and it is complex when it represents multiple devices. An
edgeis an association between 2 nodes that satisfies certain attributes necessary for the completion
of a task. Ataskis work executed by a node. If the node is complex, then the work done by each
of the constituents of the complex node is considered a “sub-task” of the task. Anatomic task
(defined in terms of a device’s capability and subjective design criteria) is an indivisible unit of
work which is executed by a simple node.

A task graphis a graphTG = (VT , ET ), whereVT is the set of nodes that need to participate
in the task, andET is the set of directed edges (from source node to the destination node) associated
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Figure 2: Application Instantiation Packet Exchange

with the task graph. A network of mobile devices can be represented as a graphNG = (DN , LN),
whereDN is the set of devices that are present andLN is the set of links connecting any two
devices. If we define apathof lengthN as an ordered sequence ofN unique links, in which the
destination of linkn is the source of linkn + 1, n ∈ {1, · · · , N − 1}, then anembeddingor an
instantiationof a task graphTG onto a MANETNG is the process of selecting a pair of functions
(ϕ, ψ), such thatϕ : VT → DN andψ : ET → PLN

, where the service and the set of attributes of a
nodev ∈ VT are contained in the set of services offered and the collection of attributes of a device
ϕ(v) ∈ DN , and where the attributes of an edgee ∈ ET are satisfied by a pathψ(e) ∈ PLN

, PLN

being the set of paths formed by the links inLN . A particular pair of functions(ϕ, ψ) represent
an instanceof the task graphTG, and a deviceϕ(v) is an “instance” of the nodev. If an instance
of a node becomes unavailable, the process of selecting a new suitable device is callednode re-
instantiation. The source node of an edge is called a “parent” of the destination node, and the
destination node is a “child” of the source node.

Instantiation and Mobility Management in Task Graphs We now introduce our protocol which
can be implemented at a layer above the routing and transport layers to support the task graph
abstraction. It assumes the presence of one node that will act as thecontroller (or coordinator)
of the application, i.e., it is in charge of instantiating each node of the task graph and executing
the node re-instantiation process, if necessary. Such a centralized approach simplifies the problem
of instance synchronization, since all devices participating in the task know that the coordinator
will always select a new instance if an existing instance becomes unreachable. In addition to that,
this protocol can take advantage of any available powerful computing device in the environment to
optimize the instantiation process, if applicable.

TheApplication Instantiationprocess can be decomposed into three major phases:

• Discovery: The controller broadcasts a TASK-QUERY packet with a list of nodes and
attributes desired. A device receiving this packet for the first time rebroadcasts it, and one
that can satisfy the attributes of at least one node in the list sends a TASK-QUERY-ACK
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back to the controller indicating the node that it can be an instance of.

• Selection: The controller selects from among the possible instances one device that will be
the node instance. The criterion we have used in this paper to select a device is to minimize
the average path length over all edges in the task graph (see Sec. 4).

• Connection: Each selected node instance S of the task graph is notified of its parent and
children devices. Then, S proceeds to contact its children and replies to any contact attempt
made by its parents. The controller is notified when all of S’s parents and children have been
successfully contacted.

Fig. 2 shows the packet exchange for the application instantiation part. Data exchange
(through TASK-DATA packets) can take place soon after the completion of this process. The
transport protocol at the Discovery part does not have to be reliable, thus we characterized it as
UDP in Fig. 2. However, during the Selection and Connection phases, the protocol should be
reliable, so as to distinguish between temporary path unavailability (and consequent packet drop)
and true unreachability (see Sec. 4 for details).

Mobility Managementof devices involves primarily two problems: (1) how to “detect”
when a device cannot be reached and (2) how to react to such an event.

We deal with thedetectionproblem by aperiodicpacket exchange between the instances
and the controller. The controller sends everyT seconds (T is the task layer timeout period) a
TASK-CONTROLLER-HELLO packet to each selected instance (and to each possible instance
until the completion of the selection part). In the same way, each selected instance (and each
possible instance) sends with periodT : (1) a TASK-DEVICE-HELLO packet to the controller
and (2) a TASK-NEIGHBOR-HELLO to each of its parent and child node instances, if these are
known. Any device receiving such HELLO packets must send back an acknowledgment. If the
sender of a HELLO packet does not receive any TASK-related packet (with the exception of TASK-
QUERY) from the intended recipient withinT sec, then the recipient is deemed unreachable. If
the unreachable host is the:

1. Controller: The sender device considers that the application cannot proceed and switches
itself to an idle state (caseB in Fig. 3).

2. Node instance: The controller may repeat the discovery, selection and connection steps as
necessary but only with respect to the node with the missing instance, i.e., other instances
are kept and no query is made regarding them. In Fig. 3, atC, the controller attempts to
re-instantiatethe missing node and starts from the discovery phase.

3. Neighbor node instance: The sender device informs the controller that it has a missing
neighbor node instance (caseA in Fig. 3). The controller performs a node re-instantiation if
necessary and informs the reporting device of its neighbor node’s new instance.

4. Possible node instance: The controller simply drops the unreachable device from the list of
possible instances.

The main principle we tried to follow in designing the protocol was that an application
should proceed as long as there are suitable devices on which it can run. In case such devices do
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not exist the application layer can be informed via a proper API mechanism to decide on a proper
course of action. The “fate sharing” characteristic that a device acting as coordinator currently has
with the application can be avoided by developing a state management and recovery mechanism to
elect a new coordinator when the original becomes unavailable. This topic is beyond the scope of
this paper and needs further research.

4 Simulation Results

We implemented our algorithm in the network simulatorns[3]. The routing protocol adopted
was DSR[12]. One helpful characteristic of DSR is source routing, in other words, packets
carry addresses of intermediate devices in the path between the source and the destination. This
information gives the controller a partial knowledge of the network topology, which we explore
in the selection phase of the instantiation. During selection, the controller must choose devices as
node instances of the task graph, from among multiple devices that answer its query. We apply the
“breadth-first search” algorithm, starting from the controller node and choosing the child instance
that has the shortest path length (according to the network topology known by the controller at that
instant) to its parent instance.

TCP was chosen as our reliable transport protocol. It minimizes the probability of mistaking
a temporary route failure with a more permanent phenomenon of device unavailability due to
mobility. However, delays due to TCP’s inherent assumption of congestion in presence of packet
loss, coupled with its subsequent backoff period before attempting retransmission, may result
in HELLO packets arriving after their expected time and triggering re-instantiations when the
old instance is still reachable. Researchers have proposed modifications to TCP to improve its
performance over MANETs [13], but in this paper, we have built our protocol on top of existing
ones. For simulations, we chose the task layer timeoutT = 7s (the default TCP retransmission
timer’s value is 6s).

Metrics and Results From our simulations we observed the value of the averageDilation1 of
our instantiated task graphs. Average dilation is the average length of the paths mapped by an
embedding algorithm over all the edges of the task graph. Lower dilation means less number of
hops a packet must traverse, on average, when traveling between node instances. The averageTime

1This metric was originally introduced in [5].
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to Instantiatea task graph is the second metric we study – this is the time taken from the start of
the discovery phase until the end of the selection phase. A related metric is the averageTime to
Re-Instantiate, which is the time taken to rediscover and re-select a new device when an existing
instance becomes unreachable. The fourth metric we look at is the averageEffective Throughput,
which is the average number of application data units (ADUs) received at the data destinations
over the number of ADUs that were supposed to be received by the intended targets if no packet
drops occurred.

We simulated for 100 devices moving in a 1000m× 1000m area, with a transmission radius
of 250m, and following the Random Waypoint mobility model [14]. The devices were “simple”
and belonged to one of the 12 types we had for the simulation. Each device’s type was randomly
selected following a uniform distribution.

Root

A B

C D

E

Root

A B

C D

E

Specialized Node

Data Flow

Data Sink

Data Source

Figure 4: Task Graphs for Simulation
We show results for the task graphs in Fig. 4, namedTG1andTreetask. The total simulation

time was 600s, with the instantiation starting at 50s, and the controller beginning a CBR flow
(12500 bytes every 5 seconds) at 60s. Devices which are not instances of the task graph do not
forward these packets, thus if a downstream instance is missing at the moment a packet is in transit,
the packet is simply dropped2. We simulated for the maximum device speed of 1, 5, 10, 15 and 20
m/s, and for a pause time of 0 and 60 s.

Fig. 5 shows that the average dilation does not change significantly with maximum speed,
which is due to the fact that the transmission radius, coupled with the spatially uniform device
distribution and the size of the simulation area, simply ensured that the devices needed for instantiating
the task graphs would be within two hops.

The “average time to instantiate” metric (Fig. 6) shows an irregular pattern in our simulation
results and we can see a peak when the maximum speed is 10 m/s. Such peaks happen most when

2Data packets that follow different paths to a data sink are assumed to have been processed by the nodes they meet
in the way and contain different information. Thus multipath availability in this study does not contribute to increased
reliability of data transmission.
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there is a packet loss or temporary route failure (congestion or partition), forcing the controller to
go through multiple discovery phases. For the “average time to re-instantiate” metric shown in Fig.
7, we can see that it increases with the maximum speed. At higher speeds the route information
cached by DSR becomes stale more quickly, and frequent route updates can result in higher delays
in packet exchange or even packet drops, if the buffers of the routing agent become full. This
eventually translates into the controller thinking that an instance may be unreachable, which will
trigger the re-instantiation process, and for the re-instantiation process to complete, all instances of
the task graph must successfully exchange packets with the controller within one timeout period.
Our simulation results show that it probably takes multiple timeout It is interesting to notice that
even though the re-instantiation time is long data are still reaching their intended destinations, as
shown by the average effective throughput in Fig. 8. This shows that even though the whole task
graph might not be fully instantiated (there are subtasks uninstantiated), still the parts which are
instantiated can carry on effective communication. This is made clearer by the higher throughput
of the Treetask graph, in which the data flows go through less number of instances (only parent→
child flows).

5 Conclusion

We have proposed in this paper a task graph framework to model distributed applications and
support their execution in MANETs. Applications are modeled as graphs composed of nodes,
representing sub-tasks to be completed, and edges, representing associations with certain attributes
between the sub-tasks. We introduce run-time support for applications modeled in this way through
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Figure 8: Avg. Effective Throughputa task layer which supports dynamic binding of the tasks to specialized devices and performs their
re-selection if any previously selected device moves away and becomes unreachable.

Our protocol assumes the presence of a controller for each application, responsible for
performing discovery and selection of suitable devices (task graph instantiation) on which the
application will be executed. Also, we require periodic task layer packet exchange among the
selected devices to monitor availability. In the case of unavailability, the controller re-instantiates
the nodes (selects new devices) whose instances are missing. Simulation results based on our
protocol show that our approach is suitable for moderate to low mobility scenarios, e.g., where
maximum speed does not exceed 10 m/s in a1 km2 area. Such environments can benefit from a
higher throughput and lower application instantiation and re-instantiation delays. We noticed that
task graphs with more independent data flows (flows intersect at less nodes) are more resilient to
high mobility and perform better in terms of throughput values. Distributed instantiation protocols,
although more complex in their operation, are likely to be more robust under higher degrees of
device mobility. We have investigated such protocols elsewhere [15].
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