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Abstract– A novel distributed approach for executing distributed tasks on mobile ad hoc
networks (MANETs) is presented. A distributed application is represented as a complex task
comprised of simpler sub-tasks that need to be performed on different categories of computing
devices with specialized roles. The dependencies induced by logical patterns of data flow
between these specialized devices which are responsible for performing the aforementioned
sub-tasks, yield a task graph representation for a given application. In this paper, we present
a simple and efficient distributed algorithm for dynamic discovery and selection of suitable
devices in a MANET from among a number of them providing the same functionality. We
refer to this process as instantiation which is carried out with respect to the proposed task
graph representation of the application. We also present a distributed algorithm for detecting
disruptions in application execution that can occur due to device mobility. The algorithm
then recovers quickly from the situation by re-instantiating affected parts of the task graph,
if possible. Finally, we propose metrics for evaluating the performance of these algorithms
and report simulation results for a variety of application scenarios.
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1 Introduction

A mobile ad hoc network (MANET) is a rapidly deployable, autonomous system of mobile
devices which are connected by wireless links to form an arbitrary graph at any instant of
time. With increase in popularity of portable devices and wireless connectivity standards
such as IEEE 802.11b and Bluetooth, MANETs are likely to gain popularity in the near
future, especially in settings where building a networking infrastructure is expensive, cumbersome,
and/or impossible. When a large number of computing devices become equipped with
wireless connectivity, they can offer services to other devices for performing several tasks.
In such a situation, since the service providing devices may themselves be mobile, a user
cannot rely on one particular device for a certain service since its reachability/availability is
not guaranteed. Instead, a user must be prepared to access the required service from any of
the several devices in the MANET providing similar services, if possible.

Recently, lower layer issues such as channel access and routing have received a lot of
attention from the MANET research community [5, 12]. However, higher layer application
design issues have received little attention so far. We bridge this gap with a novel scheme for
modeling and executing distributed applications on MANETs that rely on services offered
by devices scattered across the network.

We introduce the abstraction of a Task-Graph (TG) for representing higher-level tasks
that a user may want to perform, in terms of smaller sub-tasks. It is a graph composed
of nodes and edges, where the nodes represent categories of devices/services needed for
processing data related to the task while the edges represent necessary associations between
different nodes for performing the task. Fig. 1 shows two examples of task graphs in the
pervasive computing domain. Fig. 1(a) shows the TG of a smart presentation application
in which a user, carrying only a PDA with wireless connectivity, automatically discovers
and instantiates the most suitable devices in a room needed to make a full presentation.
Fig. 1(b) shows the TG of a music service application, in which the application tracks the
physical location of the user and instantiates the appropriate speaker devices that will play
the music the user has selected. The proposed TG modeling approach can find applications
in sensor networks, disaster relief, and distributed mobile computing/gaming too.

Before task execution, specific devices need to be selected (in other words, instantiated)
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at runtime, and then made to communicate with one another according to the structure of
the TG. When a participating device becomes unavailable due to network failures, a new
substitute device with similar capabilities has to be appointed to continue the task. In this
paper, we present efficient distributed algorithms for achieving the above goals.

We measure the success of our instantiation algorithm by some metrics such as average
time for instantiation, quality of the instantiation (in this paper, the technical term used
for this is dilation), frequency of disruption of tasks due to mobility or route failures, and
average effective throughput that is achieved after application data transmission begins.

The TG abstraction of a distributed task is potentially advantageous in many ways.
It is inherently distributed, as most pervasive applications and futuristic services are likely to
be. It also offers hierarchical composability, as collections of devices can be logically grouped
together to constitute a single node in a TG.

The concept of a task graph was originally used in parallel computing and scheduling
literature for representing tasks that can be split temporally into sub-tasks and then allocated
to different homogeneous processors connected by a fixed high-performance interconnect for
reducing the total completion time [6, 13]. Our notion of a task graph is different from
this classical one. We are not necessarily concerned with tasks that are distributable among
multiple homogeneous processors for speed-up. Rather, most tasks that we are concerned
with in this work involve several specialized heterogeneous devices that communicate with
each other, and there is no notion of minimizing the total completion time. To the best
of our knowledge, this is the first attempt toward modeling distributed applications on a
MANET using task graphs.

The rest of the paper is organized as follows: Section 2 introduces the TG modeling
framework. Section 3 presents a distributed algorithm for TG instantiation in a network.
Section 4 presents simulation results of the proposed algorithm. Section 5 briefly describes
the related work in the literature. Section 6 concludes the paper.

2 A Task Graph Based Modeling Framework

In this section, we first lay the foundations of a task graph based modeling framework and
then introduce the task embedding problem.

2.1 Terms and Definitions

A device in our context is a physical entity that is equipped with an embedded processor for
performing computations, sensors and actuators for interacting with its physical environment,
a wireless communication port for communicating with other devices, and/or a user interface.
If a device primarily performs one specific function, it is called a specialized device, otherwise,
it is called a multipurpose device. A device can have both static and dynamic attributes
reflecting its capabilities. In this paper, we only consider specialized devices with their
principal attribute, i.e., their main function. Multi-attribute extensions are possible to our
work on the lines of [1].

A service is a functionality provided by a device or a collection of cooperating devices.
There may be multiple devices in the MANET providing the same service.
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A node is an abstract representation of a device or a collection of devices characterized
by a minimal set of attributes that can offer a particular service. A node is simple when it
represents a single physical device. It is complex when it represents multiple simple nodes.
We consider simple nodes only in this paper. We refer to the principal attribute of a node
or a device as its type or category.

An edge is a necessary association between two nodes with certain attributes that
must be satisfied for a task to execute. Examples of edge attributes include causal ordering,
weight, required data rate between nodes, allowable bit error rate, and physical proximity.

A task can be described as work executed by a node with a certain expected outcome.
The work done by a constituent of a complex node is considered a sub-task of the bigger
task. An atomic task is an indivisible unit of work which is executed by a simple node1.

A task graph is a graph TG = (VT , ET ) where VT is the set of nodes that need to
participate in the task, and ET is the set of edges denoting the data flow between participating
nodes.

2.2 Embedding a Task Graph onto a MANET

Embedding a task graph TG = (VT , ET ) onto a MANET G = (VG, EG) involves finding a
pair of mappings (ϕ, ψ) such that ϕ : VT → VG and ψ : ET → PG, where the category of
v ∈ VT is the same as that of ϕ(v) and PG is the set of all source-destination paths in G.
Fig. 2(a) depicts a hypothetical task graph. Figures 2(b-c) show a sample network topology
with two possible embeddings.

The entire process of device discovery, selection of a device from multiple instances
of devices in the same category, and the assignment of a physical device to a logical node in
the task graph is referred to as instantiation. The collective process is called embedding.

2.3 Metrics for Performance Evaluation

In general, the embedding process maps edges in TG to paths in G. Average Dilation of an
embedding is the average length of such paths taken over all edges in TG. Mathematically,
if ‖a, b‖G denotes the length of a shortest path between nodes a and b in G, dilation is given

1Atomicity is related to the core capability of a device, and is partially constrained by subjective design
choices.
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Dilation is an important metric since it impacts the throughput between instantiated devices.
An embedding with high dilation signifies long paths between directly communicating devices,
which is undesirable since TCP throughput drops significantly with increase in hop distance
[11]. In contrast, an embedding with low dilation results in better task throughput.

Speed of instantiation is another useful metric which measures the time taken to
instantiate a node in TG on G. When an embedding is disrupted owing to network failures,
it also measures the time taken to find a new replacement device.

A useful metric for measuring the resilience of the protocols to failures is Average
Effective Throughput, (AvgEffT ), which is the average number of application data units
(ADUs) actually received at instantiated data sinks divided by the number of them that
were supposed to be received at the intended targets in an ideal situation2.

3 A Distributed Embedding Algorithm

In this section, we present a distributed approach for solving the task graph embedding
problem in a MANET with an objective of minimizing Davg. In this work, we assume that
each heterogeneous device can provide a single type of service, and that all nodes in the
network are simple. We assume the presence of a MANET routing protocol (DSR, in our
case) and a reliable transport protocol (TCP).

All devices in the network execute copies of the same algorithm except the user node,
U which executes a different algorithm since it acts as a state synchronizer (or coordinator3)
in the initial phases of the embedding process.

The embedding process begins at U with a distributed search which proceeds through
the MANET G hand-in-hand with a breadth-first search (BFS) through TG. Fig. 3 depicts
a task graph with its BFS and non-BFS edges. We call the spanning tree on TG induced by
BFS and rooted at U , a BFS tree (BFSTTG) of TG. We propose a greedy solution to keep
the dilation of the embedding low: the algorithm begins from U by progressively mapping

2If a relaying node in the path from source to sink gets uninstantiated, effective throughput will be
affected since certain data flows will not reach the sinks.

3In our opinion, the user devices are best suited for acting as coordinators since they usually originate
the application data flows, and even under mobility, always remain near the user.
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the nodes of BFSTTG to nearest devices and the edges to shortest paths in G. Instantiation
of any pair of nodes x, y ∈ VT cannot affect each other if x is not a parent of y in BFSTTG,
or vice-versa. Hence, the search can proceed in a distributed manner along the branches of
BFSTTG.
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The salient steps of the algorithm have been illustrated in Fig. 4 for a smaller TG by

means of a time-based message diagram, and are summarized below. Details of the protocol
(finite state machine descriptions, in particular) have been omitted due to paucity of space
and can be found in [3].

1. U broadcasts search queries for each neighbor category in TG4 (A and B).

2. Available instances of each queried node reply to U . Candidate devices that reply first
(Ai, Bj) become the chosen instances at U .

3. U sends an ACK to these selected devices which send back confirmations.

4. If there are any uninstantiated nodes rooted at any instance in TG (such as C below
Bj), then it broadcasts search query packets for all those node categories and the
instantiation proceeds further5.

5. When confirmations from all nodes reach U , the data transmission can begin6.

The task graph itself is sent as control data during the instantiation process. After
the selection of a device, control packets and application data are transmitted using TCP
since packet losses due to route errors are very common in MANETs.

4The broadcast is controlled by sending the query packet to all one-hop neighbors which examine its
contents and decide whether to rebroadcast it. A time-to-live (TTL) field in the packet also prevents it from
causing a storm.

5Bj here acts as the local coordinator responsible for instantiation of nodes rooted below it.
6In an ideal situation, all data originating at the source should reach the instances of the sink nodes

in TG (Ai and Ck in the example in Fig. 4) after having been massaged and relayed by the intermediate
devices (Bj).
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3.1 Impact of Mobility of Devices

If the devices in the network are highly mobile during the lifetime of the applications running
on the network, the network topology and previously established connections may change,
and this may disrupt the applications. Therefore, it is not sufficient to permanently appoint
specific devices for executing the application – continual monitoring must be performed to
detect disruptions, and replacement devices must be selected for resuming the application.
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Detection of Disconnections Mobility of devices may cause network partitions or disconnections,
and two instantiated devices may no longer be able to communicate if all paths between
them are broken. We propose a lightweight, soft-state exchange protocol for detecting
disconnections in an instantiated TG. The protocol requires each instantiated device to send
periodic HELLO messages (with period T ) to its logical neighbor instances in TG, which
reply with a HELLO-ACK.

Each instantiated device keeps track of its BFS parent and BFS children. If a BFS
parent device stops hearing from one of its BFS children7, it uninstantiates its child and
starts searching for a replacement of the same category. The child meanwhile would stop
hearing HELLO-ACKs from the parent (assuming bidirectional links), and will uninstantiate
itself. This has been illustrated in Fig. 5.

7The parent concludes this if it does not receive a HELLO-ACK from that child before the expiry of its
HELLO timer
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Mobility of devices may also result in lengthening or shortening of routes between TG-
node instances. Ideally, if there is no disconnection, the application should proceed without
disruption, taking help from the underlying routing protocol. But such ideal conditions may
not hold in reality where route failures at an intermediate node in DSR trigger route discovery
which along with TCP re-transmissions after timeouts may cause several seconds of delay
[11]. Hence, this can result in HELLO-ACKs not coming back in T seconds resulting in the
conclusion that a disconnection has happened, even when the node instances are reachable
from one another.

Recently, researchers have proposed solutions to the above problem based on explicit
notification of route errors to TCP [8]. In this study, we do not attempt to alter TCP or
DSR (including their default timer settings), and simply build our protocol on top of these
protocols. Hence, if a device does not receive a HELLO-ACK from its neighbor in T seconds,
we deem the neighbor to be disconnected. A reasonable value of T is one which is not low
enough to cause significant control overhead8, and not high enough such that disconnections
are not detected fast enough. For our simulations, we chose T = 7seconds (> 6s, the default
TCP retransmission timer).

Process of Re-instantiation and Bookkeeping A BFS parent device acts like a local
coordinator upon detecting a disconnection with its child at the expiry of the HELLO timer.
It then locally broadcasts a search query for the same device category. After discovering a
new replacement device, it instantiates the child in the TG and performs some bookkeeping
steps to propagate the new state information to its logical neighbors as illustrated by the
example in Fig. 6. With a little thought, one can see that information about the addresses of
parents, children, children’s parents and children’s children is enough to handle single node
disruptions in an instantiated task graph. For more details about the protocol, we direct the
reader to [3].

4 Simulation Results

We simulated our algorithms using the popular network simulator ns-2[15]. We simulated
50 (moderate) and 100 (dense) specialized mobile devices moving in a 1000m × 1000m area
according to the random waypoint mobility model [7]. The transmission range for each node
was 250m and each device belonged to one of 12 different device categories9.

We show results of simulation for the task-graph in Figure 3. The total simulation
time was 600s – the instantiation process began at 50s, and at 60s, the user/root node started
sending data to the data sinks. The data flow consisted of a CBR source, with a burst of S
bytes of data every T seconds. We report results for (S, T ) = (12500, 5). Devices which are
not part of the instantiated TG do not forward packets, and such packets are not buffered10.

We observe from Fig. 7 that the average dilation for the MANET with 100 devices
does not vary greatly with speed of mobility. This means that the average number of physical

8although exchanging HELLO messages with higher frequency could result in the DSR caches having
fresher routes

9uniformly distributed
10In other words, if a device which was part of a TG becomes disconnected while there is a packet in

transit, the packet is lost.
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hops between two instantiated nodes in TG is low and remains approximately constant under
mobility. Actually, even if a HELLO message does not reach a device within expiration time,
owing to the uniform distribution of device categories in space, the re-instantiation process
will find another device with similar attributes within a range that keeps the dilation value
constant. A similar pattern is observed for the network with 50 devices, although Davg is
slightly higher in that case owing to a lower device density.

Fig. 8 shows the average times taken to discover and instantiate a device as a function
of speed. We find that this does not vary much with speed for both cases (in the 0.1s−0.15s
range) for the reasons given in the previous paragraph. The values are lower for the 100
device MANET owing to more abundance of replacement device instances in the area.

We plot AvgEffT as a function of speed in Fig. 9. We can see clearly that, in
general, effective throughput drops with increase in speed. In Fig. 10, we plot the average
number of re-instantiations underwent during the entire simulation time. The rate of change
in network topology increases with speed causing more network partitions (mainly in the
50 device MANET) or route errors (in both MANETs). These in turn prevent HELLO
packets from arriving in time, and this triggers more re-instantiations. Since packets caught
in transit during the re-instantiation process are dropped (we do not consider application
layer buffering in this work), AvgEffT is directly affected by re-instantiations.

For the 100 device MANET, there are more disruptions for medium/high speeds
than the 50 device MANET. This phenomenon is counter-intuitive because, for a greater
device density, one would expect a lesser possibility of network partitioning, suggesting a
more stable network with a less disruption-prone condition. However, lesser/no network
partitioning does not mean lesser route changes; since DSR adopts caching, source routing
and ring-zero search11, it is sensitive to frequent route changes. This is because at medium-
high speeds, routes change frequently causing the cached routes to become stale repeatedly.
Stale routes trigger route errors which in turn trigger a route recovery mechanism at the
source. Since the average node degree is higher in a 100 device MANET (100×π×2502

10002 −1 ≈ 18),
there will be more extensive route caching at intermediate nodes with more alternate routes.
Because of the higher density, a route error could cause many alternate routes to become
stale simultaneously, i.e. there is a high correlation between neighboring route caches. This
fact is not known by the algorithm, which keeps attempting to follow these alternate routes
unsuccessfully. This causes greater packet delays and hence more disconnections and re-
instantiations. This results in lower average effective throughput (AvgEffT ) for that range
of speeds (see Fig. 9).

5 Related Work

In recent years, service discovery in networks has been a popular topic of research in the
industry as exemplified by IETF’s SLP [10], Sun’s Jini [14], and its variation for mobile
networks called MOCA [4]. Our approach is different from these as it operates at a layer
above service discovery and it can co-exist with any of these schemes.

11A device requesting routes initially queries its 1-hop neighbors, and these neighbors can answer from
routes in their caches.
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Some researchers have proposed to capture the intent of users for discovering appropriate
devices suitable to them [9, 1]. Neither of these approaches attempt to systematically model
and make use of the relationships between the components of a distributed task, which is
our principal focus.

IBM’s PIMA has a vision somewhat similar to ours. In their vision paper [2], they
argue very briefly for the design of applications in terms of sub-tasks instead of specific
devices. However, they have not mentioned any approach for realizing this vision so far.
Our task-graph concept on the other hand is a systematic and concrete approach which can
help realize this vision.

6 Conclusions

In this paper we presented a distributed approach for application execution on a network
of specialized, mobile devices. We developed a task graph abstraction for applications by
taking into account the dependencies induced by logical data flow patterns existing between
the components of an application. We then presented a distributed algorithm which yields
an efficient embedding of a given task graph onto a MANET. In other words, the algorithm
discovers devices in a MANET that are most suitable for executing a task, by an average
hop-count measure called dilation. We also presented a scalable, local detection and repair
mechanism for recovering from task disruptions caused by the mobility of devices. From our
simulation studies, we observed that our algorithm was able to instantiate and re-instantiate
TG nodes quickly with low dilation, and yielded a reasonably high effective throughput even
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for fairly mobile situations. Although we do not focus on reliable task execution in this paper,
we note that it can be achieved with buffering and re-transmissions in the application. This
will be a topic for future research.
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