Scalable Service Composition in Mobile Ad hoc
Networks using Hierarchical Task Graphs*

P. Basu, W. Ke, and T.D.C. Little

Department of Electrical and Computer Engineering, Boston University
8 Saint Mary’s St. Boston, MA 02215
pbasu@bu.edu, ke@bu.edu, tdcl@bu.edu

MCL Technical Report No. 10-01-2001

Abstract— Service discovery is an essential component of application development in dy-
namic environments such as mobile ad hoc networks (MANETS). This is because the service
providing devices are themselves mobile in MANETSs and hence, the service-device binding
cannot be tightly coupled over the lifetime of an application. Therefore, during the progress
of a distributed application, a user should be capable of discovering and utilizing several
different instances of a particular service in the network, if necessary. A common goal of all
service discovery protocols is to discover the required services in a timely and scalable fashion,
so that the application can run smoothly. In this paper, we investigate a related dimension
of the service discovery problem, namely, service composition. In general terms, service
composition refers to the process of combination of multiple simple services in order to form
a larger, more complex distributed service. This offers users a great degree of transparency
in discovery and selection of required services, instead of having to be cognizant of all the
details about the simpler services that constitute the complex ones. Also, this can reduce
discovery latency at the time of executing distributed applications.

Owing to the hierarchical nature of the service composition framework, we represent a
distributed application and its smaller components using logical hierarchical task graphs. At
every level of hierarchy in the graph, nodes representing logical services and edges between
nodes representing required data flows between corresponding services form a task graph
with a specific degree of detail. In this paper, we present a distributed framework and
protocols for achieving the following goals: (1) construction of complex distributed services
from simpler services, (2) runtime discovery of devices and instances of services that are most
suitable for executing the larger distributed application, and (3) rapid adaptation to node
and link failures due to mobility or other reasons. Finally, we discuss several issues that are
relevant for the performance evaluation of such a system by simulation or implementation.

* Proc. 1st Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net 2002), sponsored by IFIP,
Sardegna, Italy, September, 2002. This work was supported by the NSF under grant No. ANI-0073843. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation.

1 Introduction

Recent advances in embedded processor technology and wireless computing are beginning
to push ubiquitous computing (ubicomp) into the mainstream. Wireless technologies such
as IEEE 802.11 [4], Bluetooth [3], and HiperLan 2 [8] have the potential of enabling several
interesting “networked” ubicomp applications, some of which can already be seen in smart
offices and homes now. Service discovery is an important component of such applications.
Recently, a significant amount of research effort has been spent on developing efficient service
discovery protocols for wired as well as wireless network infrastructures, the notable ones
being SLP [6], Jini [15], UPnP [16], Salutation [14], and Bluetooth SDP [3]. A distributed
ubicomp application can require several services at different stages of its execution. In
general, these services are supposed to transform user inputs into desired output, and can
be offered by local or remote computing devices.

A common goal of all service discovery protocols is to discover these services available
in the network in a timely and scalable fashion, so that the application can run without
glitches. A related dimension of this service discovery problem that has received little
attention from the research community is service composition. In general terms, service
composition refers to the process of combination of multiple simple services in order to form
a larger, more complex service. This offers users a great degree of transparency in discovery
and selection of required services, instead of having to be cognizant of all the details about
the simpler services that constitute the complex ones. Also, this can reduce discovery latency
at the time of executing distributed applications.

With increase in popularity of portable devices and wireless connectivity standards,
MANETS are likely to gain popularity in the near future, especially in settings where a
networking infrastructure is expensive, cumbersome, or impossible to construct. We can
conceive scenarios in which the environment surrounding us consists of a large number of
specialized as well as general purpose devices, many of which are portable and linked through
wireless connections, albeit with fluctuating link availability. Ideally, such pervasive networks
can enable a broad range of distributed applications that need exchange of information
between multiple devices. When a large number of computing devices become equipped
with wireless connectivity, and they form a MANET, they can offer their services to other
devices for performing several tasks. In such a situation, since the service providing devices
may themselves be mobile, a user cannot rely on one particular device for a certain service
since its reachability or availability is not guaranteed. Instead, a user must be prepared to
access the required service from any of the several devices in the MANET providing similar
services, if possible.

In this paper, we present a distributed algorithmic framework for achievement of the
following goals in a MANET environment: (1) construction of complex distributed services
from simpler services, (2) runtime discovery of devices and instances of services that are
most suitable for executing the bigger application, and (3) rapid adaptation to node and
link failures due to mobility or other reasons. Owing to the hierarchical nature of the service
composition framework, we model it using “hierarchical graphs” with nodes in the graph
representing services and edges between them representing data flows that need to exist
between the corresponding services.

Hierarchical structures have been used in the past to model clustering problems in

MANETS [13]. In that work, devices in physical proximity are organized into manageable
clusters for ease of routing and enforcing QoS schemes. However, our use of hierarchical
modeling is completely different and novel since the clustering that is imposed on the devices
by a hierarchical task graph is logical and as per the specifications of a distributed application
data-flow. In our framework, the devices that are selected to offer a distributed service may lie
in one so called cluster but may not be in physical proximity of each other — in fact they may
be communicating over multiple hops. Service composition has two principal advantages: (1)
only an abstraction of the complex service needs to be known to most users requesting that
service, and (2) in ubiquitous computing environments where complex services that have
already been “composed” from simpler services earlier are available, they can be discovered
and used readily, thus reducing the composition latency.

Czerwinski et al. have described an architecture for a secure service discovery service
(SDS) where they have a hierarchy of directory-based servers advertising the available
services [5]. This is a directory based approach and requires an existing infrastructure for
operation, i.e., it cannot operate in truly ad-hoc environments. Moreover, their approach
does not attempt to compose higher-level services from a set of simpler services. Hodes et
al. have investigated means for composing services for heterogeneous mobile clients [9], but
they too have not addressed the issues involved in composing complex services from simple
devices with particular interaction patterns between them. Their work primarily focuses
on controlling office equipment from mobile devices and design of client-device interfaces,
and does not address issues related to distributed service discovery in ad-hoc networks.
The PIMA project of IBM Research has a vision somewhat similar to ours. In their vision
paper [1], they argue very briefly for the design of applications in terms of sub-tasks instead
of specific devices. However, they have not mentioned any concrete approach for realizing
this vision so far.

The organization of the rest of the paper is as follows: Sec. 2 describes the basic
concepts behind modeling distributed applications using hierarchical task graphs. Sec. 3
presents the distributed algorithms for discovering and instantiating services specified in the
task graph associated with the application. It also presents the mechanisms for recovery in
case of disruptions in the application due to mobility of devices. Sec. 4 discusses several
issues which are useful for the performance evaluation of the service composition architecture
by simulation or implementation. Sec. 5 concludes the paper with pointers to future work.

2 Terms and Definitions

2.1 Devices, Services, Nodes, and Edges

A device in our context is a physical entity that performs at least one function out of the
following: interaction with its physical surroundings, computation, and communication with
other devices. A device is usually equipped with an embedded processing element, sensors
and actuators for interacting with the physical environment, a wireless communication port,
and a user interface. If a device primarily performs one specific function, it is called a
specialized device, otherwise, it is referred to as a multipurpose device. Examples of the
former type include digital cameras, speakers, printers, keyboards, display devices etc., while

Laptol i
aptop Print Server () USER (root node)

PDF Document (PDF to PS)
H
Print Server
(PDF to PS converter)

Printer (complex node)

Printer Nodes

Figure 1: A Smart Printing Service

examples of the latter include PDAs and laptops.

The capabilities of each device can be summarized in their attributes. Attributes
can be static (which do not change with time) or dynamic (which change with time). For
example, a network digital camera can have a static attribute “resolution” which can take
values like 320x240, 640x480 etc. Examples of dynamic attributes include location (absolute
or relative, depending on the availability of GPS), power levels, available computational
power (or load), and available communication bandwidth.

A service is a functionality provided by a single device or by a federation of cooperat-
ing devices. When simple services offered by single devices are composed, a complex service
can be formed. We will describe this process in greater detail in Sec. 3. Multiple devices
can exist in a MANET offering the same service.

A node is a logical or abstract representation of a device or a collection of devices
characterized by a minimal set of attributes that can offer a particular service. A node is
simple when it represents a single physical device that offers a certain service. It is complex
when it represents multiple simple nodes collaborating to offer a particular service. In this
paper, we propose a framework for the formation of complex nodes from simple ones. We
refer to the principal attribute of a node or a device as its class or category or type. Examples
of classes include printer, speaker, joystick etc. Complex nodes are explained in more detail
in Sec. 2.3.

An edge is a necessary association between two nodes with attributes that must be
satisfied for the completion of a task. Examples of edge attributes include causal ordering,
weight, required data rate between nodes, allowable bit error rate, and physical proximity.

2.2 Tasks and Task Graphs

We have proposed elsewhere [2] the use of logical resource dependency graphs (we call them
task graphs (TG)) for modeling a distributed application on MANETSs with specialized
devices. According to that definition, a task can be described as work executed by a node
with a certain expected outcome. Work done by a component of a complex node is referred
to as a sub-task of the bigger task. An atomic task is an indivisible unit of work which
is executed by a simple node. Atomicity is related to the core capability of a device, as
described by its attributes, and is partially constrained by subjective design choices.

A task graph is a graph TG = (Vp, Er) where Vi is the set of nodes that need to
participate in the corresponding task, and Er is the set of edges denoting data flow between
participating nodes. Although the notion of hierarchical composability is briefly mentioned
in [2], we completely concentrate on flat task graphs in that work. In this paper, we argue
that hierarchical graphs can naturally model dynamic service composition, and propose a
framework for achieving the same. We use the existing framework of flat task graphs as
developed in [2].

An example may bring further clarity to the abstractions developed so far. Consider
a scenario in which there is a postscript (PS) printer connected to a small computer (print
server) running filtering software that can convert PDF files to printable PS format. The
printer and the computer are each devices that offer particular services. The printer is a
specialized device offering the service of converting PS files into printed pages, while the
computer is a multipurpose device which offers a service of converting PDF files into PS
format among many other services. The example has been illustrated in Fig. 1.

The printer is a physical device representation of a simple node with certain attributes
(such as print resolution, ink color) that offer the service of converting PS files into printed
pages. Analogously, the print server computer plus its filtering software can be viewed as a
representation of a PDF — PS converter node. By taking these two nodes together we can
form a complex node that offers a “PDF printing service”. A task we have in mind is the
printing of one PDF document. In this specific case, based on subjective criteria, we define
an atomic task to be the printing of one page of the document!. The entire document can
be then printed on a set of available printers as shown in Fig. 1.

These abstractions and terms are created to allow us to separate the desired outcome
(the printed pages of a PDF file) from the elements that enabled such outcome (computer
+ filtering software and PS printer) and the process involved in obtaining the desired
outcome (which is the Task-Graph discussed later). We separate these because in a MANET
environment, it is highly likely that even if one such enabling physical device is absent, the
desired outcome can still be obtained by accessing other devices of similar (if not equal)
attributes. If such separation did not exist, we could be trapped into thinking that what
we needed is a specific device, instead of devices of certain attributes. Granted that this
example is simple (even trivial), we believe that research that enables such capability in
today’s MANETS for arbitrary device types and quantities is essential for tapping into the
networked environment’s full potential.

Note that in this scenario we formed a new service (PDF printing) by combining two
existing ones. This is the basic idea behind composition of two services to yield a third one.
We illustrate the idea further by an example in Fig. 2.

Let us consider a ubiquitous computing application of image/video capture, storage
and printing. A user wants to locate a digital camera, get his/her image captured, preview it
and then store it (perhaps temporarily) on available storage devices in his/her surroundings,
since the user’s PDA may not have enough capacity to store the photograph. The user may
also want to print a suitable image on a nearby printer. Fig. 2 depicts two task graphs for

"'We did not come up with any objectively quantifiable argument as to why the atomic task should not
be the printing of a dot in the paper. Subjectively, we believe atomic operations at that level are too
cumbersome to manage at such high-level abstraction.

FAULT TOLERANT
PEER-TO-PEER
STORAGE SERVICE

PHOTO CAPTURE &
STORAGE SERVICE
wey?
Zvey” <

REQ CAMERA
USER ”
/e" 4 stordge nodes USER

7777777777 stov —_—

_/ % AFTER COMPOSITION
s E
prewew) Q Rrinting service
int-server

pr0X|m|ty PRINTING SERVICE

rinter

p2p storage

2

PHOTO CAPTURE &
PRINTING SERVICE

Figure 2: An Example of Service Composition

performing the same task, at different levels of abstraction and service composition.

In Fig. 2(a), the user requests a camera service, gets his/her picture taken by a
nearby camera, previews the picture, and then instructs the camera to store the picture
from its buffer into a fault tolerant peer-to-peer (P2P) storage system in the surroundings?®.
After the camera discovers a P2P storage service, it stores the image, and the latter returns
a key to the user for future access of the image. The printing also proceeds in a similar
fashion. However, in Fig. 2(b), the user just requests an instance of a “Photo Capture &
Storage” service which is a service “composed” of 2 simpler services, namely, Camera and
P2P Storage. In this case, a camera device has already chosen a nearby P2P storage system
in the network. Hence, when the user sends a store instruction, the image is stored on the
already selected storage nodes with no discovery latency.

Note that the fault tolerant P2P storage service is a complex service since it is
composed of simpler storage services, hence the composition hierarchy is two levels deep.
Each service is represented logically by a “node” in the task graph. Also, a task graph
corresponding to a complex service such as “P2P storage” is represented by a node in the
hierarchical task graph corresponding to the higher level service.

Dynamic Instantiation of Nodes In MANET environments where some devices can be
mobile, a user should not depend on a particular device for a desired service; instead, he/she
should attempt to access similar services provided by several nodes in the network. Thus,
before the execution of a task, specific instances of physical devices are selected, in other
words, instantiated, for every logical node in a given TG. More specifically, each type of a
node in TG should be “mapped” to one suitable instance of a device or a service for taking
part in task execution. The type and attributes of the chosen devices should match those of
the nodes in the TG. They are then made to communicate with one another according to
the specifications of the TG.

Since a participating device may become unavailable due to mobility or failures, a
new substitute device with similar capabilities is instantiated dynamically to continue the
task, if possible. In Sec. 3.3 we propose mechanisms for recovering from such events during
service composition.

2A fault tolerant P2P storage service is collaboratively provided by a number of devices with available
storage space. The fault tolerance is achieved by replication or coding as indicated in the figure.

DEPTH=0

ROOT

DEPTH=1

DEPTH =2

DEPTH=3

Figure 3: A Hierarchical Task Graph and Layered Graphs

2.3 Hierarchical Task Graphs

A hierarchical graph contains nodes that are simple or complex. Simple nodes are the leaves
of the containment hierarchy (this is intuitively clear but is defined formally in the next
paragraph) and are characterized by their type and attributes. A complex node is at an
intermediate level of the containment hierarchy and contains another hierarchical graph of
smaller size.

The containment hierarchy, CH of a hierarchical task graph is a tree structure as
depicted in Fig. 3. The containment hierarchy is given by a tree since there are no overlaps
between complex nodes at any levels in the hierarchy. In the figure, the nodes have been
uniquely numbered or labeled according to their depths in CH®. For example, in the figure,
nodes 1, 2, and 1.1 are complex nodes, whereas 1.1.1, 1.1.2, 1.2, 2.1, and 2.2 are simple
nodes.

Formally, a hierarchical task graph Gy can be defined by a tuple (V, E,CH), where
V =V, UV, is the set of nodes, and E = E, U FE, is the set of edges between certain pairs of
nodes. V; is the set of simple nodes which are leaf nodes of CH, and V, is the set of complex
nodes which are the intermediate nodes. Ej is the set of simple edges between simple nodes,
and F, is the set of compler edges between complex nodes as well as between simple and
complex nodes. The definition of a hierarchical task graph that we have given here is general
thus far. In Sec. 3.2, we establish a few rules in our instantiation framework that govern the
derivation of complex edges from simple edges.

3 Service Composition using Hierarchical Graphs

In the previous section, we described the basic building blocks for service composition. In
this section, we describe how the service composition problem can be modeled satisfactorily
with hierarchical task graphs. We use the notation developed in Sec. 2.3.

3The “depth” of the top node in CH is assumed to be 0 and it increases as the tree is traversed downward.

3.1 Structure of a Complex Node

As we have mentioned before, a complex node in a hierarchical TG is an abstract represen-
tation of a smaller task graph corresponding to a complex service which can be requested
by another device or a service. Consider a complex node C; € V. at depth = 7 in CH. Let
V(C;) = {C’i(}r)l, Cfi)l, ce C’Z!}ﬁci)'} be the set of nodes at depth = i+1 which are C;’s children
in CH. Then V(C;) is the vertex set for the task graph corresponding to the complex node
Ci.

Controller Nodes In every instance S of a service S, one physical device out of all
participating devices acts as a controller of S for advertising the service and responding
to queries for S by other devices. In case of a simple service, the controller is obviously the
device providing the service itself. However, in case of a complex service, the controller has
to be selected or elected from among all the participating devices. The controller also has
a responsibility of carrying out discovery and instantiation of other services that S needs.
The specific functions of the controller will become clearer in Sec. 3.2 where we describe the
instantiation algorithm in detail. We denote the controller of S by S.

Interface Nodes Now, there may exist nodes in V' (C;) which interact with services outside
C;. We refer to such nodes as “interface nodes” at that particular depth. In Fig. 3, nodes 2.1
and 1.1.2 act as the interface nodes for services depicted by nodes 2 and 1. If 1 F(C;) denotes
the set of interface nodes in Cj, then 1 < |[TF(C;)| < |[V(C;)|. Interface nodes are needed
during instantiation for continuing the discovery of services which are located downstream
from the current node in the task graph at a particular depth in the hierarchy. They also
serve as points of data exchange between services.

The Type of a Complex Node We favor strong typing of services and hence complex
nodes. In other words, in our system every service belongs to a particular type; while
requesting a service, a device refers to it by its unique type. There are some atomic “types”
in any network of devices and some composed types which are constructed from the atomic
types. A close analogy is that of the basic data types in a higher level programming language
and the advanced data types that can be constructed from the former.

3.2 Instantiation of Hierarchical Task Graphs

In this subsection, we propose an algorithm for instantiation of hierarchical task graphs in
order to achieve service composition. First, we state the assumptions that are needed to
make the system work:

e We assume the presence of a reactive MANET routing protocol such as AODV [12],
DSR [11] etc. and a reliable transport protocol such as TCP. Our protocol will be
implemented above the routing/transport layer, and will obey the layering principles.

e If S is a service type, we denote by S the instantiated device that advertises S and
responds to queries for S from other devices. If S is a simple service, then S is the

device offering that service. On the other hand, if S is a complex service, S is one of
the devices that cooperatively offer that service. Also, a complex service is said to be
instantiated if all its children nodes in C’H have been instantiated.

e When the system is in initial stages, devices only answer queries regarding simple
services i.e. their core capabilities. However, simple task graphs can be uploaded to
these devices either by a user requesting services or during their initialization. For
example, a device hosting a print server (P.S) may possess a task graph during boot-
up that will instruct it to discover a printer device (PRT). In case the task graph
is not available during boot up, it may be supplied by the user making the request
for a printing service (P). There is an issue to be noted here: if PS has a task graph
at boot-up, then it will discover a PRT and can answer user queries about P, since
P = PS. However, if PS does not have a task graph, then it cannot respond to user
queries about P since it is not aware of that type of service. Hence the user (or the
administrator) is expected to supply the relevant task graph to PS so that it is aware
that it needs to discover an instance of PRT to be able to offer a complete printing
service P. The information known to the user has to be up to a certain depth d in
the containment hierarchy of TG such that all services needed at or below d must
either already exist in the network or be capable of being formed independently in the
network by their component devices. These associations can be cached at the devices
so that in future time instants, users can query for P and be served.

We believe that a community of users can continually build up a set of services from
their simpler components and the logical task graphs which represent the complex services
can be shared among the users. This will result in more casual users using services that
have been logically composed earlier, at the same time it allows more innovative users to
create complex services and then share them with others. The instantiation of a service in
most cases will however be done at runtime. In this paper, we assume that a user possesses
the task graph along with the containment hierarchy CH so that it does not have to depend
upon the existence of any simpler services. However, if any instance of a required simpler
service exists in the network, our protocol will attempt to make use of it.

Derivation of Complex Edges from Simple Edges Let TGy = (Vi, Es) be the flat
task graph that can be constructed from simple nodes and edges alone. Usually in a flat task
graph, the user node is assumed to be the root node. All other nodes are downstream from
the user node. The instantiation of nodes in a flat task graph proceeds along the branches of
a breadth first search spanning tree! (BFST) rooted at the user node [2]. If the TG itself is a
tree, then there are no non-tree edges in BFST. BFST has no relation with the containment
hierarchy C’H which is also a tree. We extend this notion of a BFS tree structure rooted at
the user node at every depth in a hierarchical TG, and that results in the establishment of
the following rules which helps during the instantiation process (this will be more apparent
later in Sec. 3.2.1 when we describe the instantiation algorithms):

The rationale behind these rules is that an upstream service (or node) gets instanti-
ated entirely before a downstream service. Hence for every simple edge between two nodes,

4In a BFS spanning tree, vertices which are equidistant from the root are at the same level

Algorithm 1 Rules for Derivation of Complex Edges from Simple Edges
Given: e = (n;,n;) € E,; and depth(n;) < depth(n,) in CH.
if (n; is at a higher level in BFST than n;) then
1. p € Vis the parent node of n; at the lowest depth in the common subtree in CH to
which both n; and n; belong, such that p is not the root of the common subtree.
p can be n; too.

2. Vn.:n.=n; oris a parent of n; and depth(n.) > depth(p), (p,n.) € E..
else
1. p €V is the parent node of n; at the lowest depth in the common subtree in CH
to which both n; and n; belong, such that p is not the root of the common subtree.

2. Vn.:n.=mn; oris a parent of n; and depth(n.) > depth(p), (p,n.) € E..
end if

complex edges exist between the corresponding complex upstream node and simple as well
as complex downstream nodes, assuming all these nodes are in one common subtree in CH.
These edges are necessitated by aspects of the discovery/instantiation process of downstream
nodes by upstream nodes as exemplified by an example later in this section. In Fig. 3, where
2 is a complex root node in the BFST, a simple edge between simple nodes 1.1.2 and 1.2
contributes to a complex edge between complex nodes 1.1 and 1.2. Similarly, the simple
edge (2.1,1.1.2) corresponds to the complex edges: (2.1,1.1), (2,1.1), (2,1.1.2), and (2, 1).

We now explain the principal idea behind our instantiation algorithm by means of
a simple example for ease of explanation. Detailed steps are explained later in Sec. 3.2.1.
Consider the task graph shown in Fig. 3. Suppose 2 has been already instantiated, i.e., 2.1
and 2.2 are known. Let 2 = 2.2. Now, 2 wants to discover an instance of a service of type 1
and broadcasts a query packet with the relevant information. Now there are two possibilities:
(1) an instance of service 1 exists, and (2) there is no reachable instance of service 1. In case
(1), the controller device of 1 (i.e. 1) receives the query and responds to 2 which is 2.2 in
this example. In the response packet which is unicast using underlying MANET routing, 1
sends information about interface node instances (1.1.2 in this case) between nodes 1 and 2,
so that actual physical connections can be made between them. When 2.2 receives the ACK
message with interface node information, it informs 2.1 to connect to 1.1.2. Device 2.1 also
updates its task graph with the new instances of devices participating in service 1.

In case (2), no device will answer the query for service 1. It can mean that no instance
of service 1 has been composed yet, or that those instances are unreachable from instances
of service 2. Hence, service 1 needs to be instantiated on demand. Now, 2.2 will query for
individual devices or simpler services, such as 1.1, that constitute service 1. It is possible
that 1.1 exists without 1 existing. In that case, 1.1 would want to discover 1.2 in order to
have the instance 1. But, if T.1 does not exist, 2 will query for service 1.1.2. An instance
1.1.2 that replies to the query will be instantiated, and then it will continue the search
process further. After all requested services have been instantiated, the application can start
data transmission. After data transmission is over, the associations between participating
nodes can be cached for future use so that a request for a complex service can be fulfilled
immediately.

3.2.1 Distributed Algorithms for Instantiation of Hierarchical Task Graphs

Now we describe the steps of the distributed algorithms for achieving service instantiation
and composition. All devices execute the same copy of the distributed algorithm except
the core user device which acts as a coordinator for state synchronization. The user wants
to execute an application and is assumed to possess a relevant task graph for it. We have
illustrated earlier in this section examples of situations where higher level knowledge of the
services and the interactions between them is not enough. Hence, even if a user may not
need deeper layer information about the hierarchical services, his/her PDA should contain
the entire task graph to be prepared for the worst case. After a few instances of a complex
service have been bootstrapped, later users only need higher level information to discover
those relevant services. We discuss this in further detail in Sec. 4.

The essentials of the user state machine during the instantiation phase are shown by
a distributed algorithm (Algorithm 2). The algorithm that is implemented by the protocol
state machine on all other devices in a MANET is given by Algorithm 4. We explain the
details of these algorithms in this subsection. The algorithms have been presented as pseudo-
code with descriptive names for variables and routines. All routines have not been explained
to the utmost detail in this paper but the general idea is easy to grasp. Both algorithms
are distributed and are driven by events such as arrival of packets of certain types or by
expiry of certain timers. The steps within each single execution of the for loops are assumed
to be atomic in the sense that if a packet arrives during the execution of some of those
“if-then—else” statements, it will be queued and processed only after the control returns to
the WAITFORPACKET() call.

Querying for Services The instantiation process begins at the user (coordinator) device
(U) which contains a description of the hierarchical task graph corresponding to the appli-
cation that is desired to be executed®. In the beginning, a task graph TG is extracted from
Gy at depth d = 1, i.e., only the top level service descriptions are known to the algorithm
at this stage. Then the nodes in TG which are neighbors of U are queried (Algo-2::6-9).
The broadcast query packet contains a query string (Qg,.) which constitutes of the type
of the requested service. Generally, the entire service hierarchy is included in the query
string starting from the querier’s own depth. The coordinator node starts a timer after
broadcasting the queries. If the timer expires before it gets any response, it handles the
situation by querying a less complex service, an instance of which may be available in the
network (HANDLEBROADCASTTIMEOUTS() at Algo-2::40). Detailed steps can be found in
Algorithm 3. The complex edges that were introduced in Gy by Algorithm 1 are useful at
this stage since the coordinator knows exactly what service to query for if it does not hear
a response from an instance of a higher level service.

Although we don’t mention it explicitly, we assume that all steps to control a broad-
cast storms will be taken. Some of these salient steps include the use of TTL scoping,
maintenance of broadcast sequence numbers so as not to rebroadcast an old packet etc. We
do not discuss these in detail in this paper.

5The task graph can be represented using an extension of the XML specification language called
GraphXML [7].

State Management in Devices and Response to Broadcast Queries Notationally,
we assume a generic initial state in the non-coordinator algorithm given by S[i],i =1...m
(Algo-4::1) but at the very beginning when no instances of complex services exist in the
network, each device is a member of only one service instance, the one that it provides
alone, atomically (m = 0). With progression of time, devices start taking part in multiple
services at various levels of complexity. This is not to be confused with the depth of the
corresponding node in the absolute CH. A “higher-level service” always refers to a service
at a lower depth in CH. At any level of complexity i, a device’s state is given by stateli
which has two disjoint components: whether it has been instantiated at that level (denoted
by one of the 3 states, UNINST, WAIT_FOR_ACK, or INST) or if it is a controller of that service
or just a plain member (denoted by SRV_MEMBER, or SRV_CONTROLLER).

When a devices receives a service query packet (Algo-4::4-8) with a query string
Sky 11 Sky 1. .. 11 Sk, where Sy, is the simplest service and Sy, is the most complex service,
it tries to find a match with the most complex service that it can offer at that instant of
time®. If the device is a controller of the service at that level and it is uninstantiated, then
it accepts the request for service and sends a response to the sender as a possible candidate.
It also changes its state from “uninstantiated” to “waiting for acknowledgment,” and starts
a timer (not shown). If the timer expires before receiving an ACK from the sender, the state
is changed back to uninstantiated.

SMAXMATCH tries to find the most complex entry in the query string that matches S[m]. It returns —1
if no match is found.

Algorithm 2 Coordinator Device Instantiation Algorithm

1:
2:

10:
11:
12:
13:

14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:

25:
26:

27:

28:

29:

30:

31:

32:

33:
34:

Given: Hierarchical Task Graph, Gy = (V, E,CH).
TG(Vr, Er) «— EXTRACTTG(Gy,d <+ 1); /* extract task graph at depth d =1
from Gy */

Vg <— {v € Vp | v is user node U’s neighbor in TG}; /* neighboring service nodes
in TG */

: UninstSrv <« Vi UninstSrvpg, < Vi, /* uninstantiated
services: (all+neighboring) */
InstSrv < ¢; InstSrv,g «— ¢; /* instantiated services:(all+neighboring)
*/
for (Vv € UninstSrv,g) do
v.acked <— FALSE; /* initialize acked variable */
V.Qgtr — v.SETVICE_tYDPE; /* initialize Query string */
BROADCASTQUERY (v.Qg,); /* begin search for required service instances
*/
end for
for (; ;) do
WAITFORPACKET(pkt); /* can forward broadcast packets too in this state
*/
if (pkt.type = CANDIDATE RESPONSE) then
/* response to broadcast query */
if ((Jw € UninstSrv,g |w.service_type = pkt.service_type;) A (w.acked = FALSE))
then
SENDACK (pkt.srcaddr,Gy); /* send ACK along with the task graph */
w.acked < TRUE;
end if
else if (pkt.type = CONFIRMATION A (w « pkt.service_type)) then
/* the controller of a service confirmed the receipt of an ACK pkt */
g «— EXTRACT_SUBGRAPH(pkt);
w.controller = pkt.srcaddr;
INSTANTIATE(G g, 9); /* instantiate nodes in Gy with physical
addresses */
UninstSrv < UninstSrv \ {w}; UninstSrv,g «— UninstSru,g \ {w};
InstSrv «— InstSrvU{w}; InstSrvg < InstSrv,g U{w}; /* update
service vars */
else if (pkt.type = SUBTREE_CONF A (ds € InstSrv,g : s.controller = pkt.srcaddr))
then
/* an entire subtree has been confirmed to be instantiated */
g < EXTRACT_SUBGRAPH(pkt);
INSTANTIATE (G, g); /* instantiate nodes in Gy with physical
addresses */
SubtreeSrv < {s'| ' is in the subtree at depth d = 1 rooted at s}; /* extract
subtree nodes */
UninstSrv < UninstSrv \ SubtreeSruv;
InstSrv < InstSrv U SubtreeSrv; /* update global service variables */
if (UninstSrv = ¢) then

Algorithm 3 HANDLEBROADCASTTIMEOUTS()

1. S[m] = {io, do.i1, i9.i1.92, -, Go.01. im} /* initially, max.level
m=0= 5= {Suom} */

2: Yu € UninstSrv,g, such that u.active = TRUE : /% check for all active, uninst.
services */

3: if (TIMEOUT(u.service_type) = TRUE) then

. /* if no instance found for u in a specified timeout period */
5. V'« {v eV |visu’schild in CH and (S[m],v") € E}; /* find simpler

services in Ggy */

6: UninstSru,g < UninstSrv,g UV’ w.active < FALSE; /* update service
variables */

7. Vre V' { 2.Qu — uQsy : x.service_type; BROADCASTQUERY (2.Qstr); } /%

issue queries */
8: end if

Algorithm 4 Non-Coordinator Device Instantiation Algorithm

1: Given: Own Service Types and Instantiation states at different levels in the “relative”

hierarchy:
S[m] = {io, to.i1, t0.i1.92, -~ , G001 im} /* initially, max.level

=0=95={Suom} */

Vi : state[i] € {UNINST, WAIT_FOR_ACK, INST} x {SRV_MEMBER, SRV_CONTROLLER}

2: for (; ;) do
3: WAITFORPACKET(pkt); /* can forward broadcast packets too in this state
*/
4: if ((pkt.type = SEARCH_QUERY) A (MAXMATCH(pkt.Qs, S[m]) # —1)) then
5: if (state[m] & (SRV_CONTROLLER | UNINST)) then
6 SENDCANDIDATERESPONSE(pkt.srcaddr, S[m]); /* send CANDIDATE RESPONSE
upstream */
7 state[m] « state[m] & “UNINST | WAIT_FOR_ACK; /* change state to
WAIT_FOR_ACK */
8: end if
9: else if ((pkt.type = ACK) A (Ti : S[i] = pkt.service_type) A (stateli] & WAIT _FOR_ACK))
then
10: Gpu «— EXTRACT_TASKGRAPH(pkt); /* extract rest of the task graph */
11: stateli ... m| < state[i...m| & "WAIT_FOR_-ACK | INST; /* update states to INST
*/
12: Cout < EXTRACTINTERFACENODEINFO(Gf, S[m|); /* downstream interface
nodes */
13: SENDCONFIRM(pkt.srcaddr, S[m)); /* send CONFIRMATION of service
instantiation */
14: if ((¢ < FINDCHILDREN(Gp, S[m])) # ¢) then
15: Vo € Cpyt : INSTRUCTNODETOCONTINUESEARCH(z, ¢(2), G); /* send
CONTINUE_SEARCH */
16: else
17: SENDSUBTREECONFIRM(pkt.srcaddr, S[m)); /* send SUBTREE_CONF to
parent */
18: end if
19: else if (pkt.type = CANDIDATE RESPONSE) then
20: if (3w € UninstSrv,g, : w.service_type = pkt.service_type) A (w.acked = FALSE))
then
21: SENDACK (pkt.srcaddr,Gy); w.acked «— TRUE; /* send ACK to the
candidate device */
22: end if
23: else if (pkt.type = CONFIRMATION A (w « pkt.service_type)) then
24: if (S[m].controller # MyAddr) then INFORMCONTROLLER(pkt); continue; end
if
25: g — EXTRACT_SUBGRAPH(pkt); w.controller = pkt.srcaddr,
INSTANTIATE(G g, 9);
26: UninstSrv <« UninstSrv \ {w}; UninstSrv,g «— UninstSru,g \ {w};
27 InstSrv «— InstSrvU{w}; InstSrvgg, < InstSrv,g U{w}; /* update
service vars */
28:

else if (pkt.type = SUBTREE_CONF A (3s € InstSrv,g : s.controller = pkt.srcaddr))

Instantiation of Services and
Confirmation A coordinator can receive
responses from several candidate service
instances out of which only one is sent an ACK
(Algo-2::13-18). However, the instantiation
of that service is completed only when
the controller of that service replies to
the ACK packet with a CONFIRMATION
packet (Algo-4::9-18). These steps require
some more explanation. The coordinator
sends the task graph Gy along with the
ACK packet so that the chosen candidate
service instance can continue the process
of discovery of its children nodes and their
instantiation. Hence, at any stage, the
responsibility of instantiation of hitherto
uninstantiated services is distributed among
the controllers of the nodes that have already
been instantiated, more precisely among
their parent nodes in the embedded tree in
GH-

After a candidate controller device
receives an ACK, it changes its state from
“waiting for ACK” to “instantiated.”
Imagine a situation when a coordinator
had queried for a complex service CS, then
timed out because there were no instances
of CS, and then it queried for a simpler
constituent of CS, namely SS. Suppose, a
candidate device D had responded to the
SS query but by the time it got an ACK
from the coordinator, it had already formed
an instance of CS independently and that
was available for use. When the ACK for
SS (S[i] in line Algo-4::9) arrives at D, it
replies with a confirmation message for CS
(S[m],m > ¢ in line Algo-4::13) since the
requester had originally wanted to discover
an instance of CS only. Simultaneously, D
extracts the interface node information from
the task graph as well as information about
who its children are in the embedded BFS
tree rooted at node S[m|. The interface
node information is important since those
are the devices that will have interfaces with

the controllers of downstream services, and
hence it is logical that they continue the
discovery.

When a CONFIRMATION packet
arrives at the coordinator device, the latter
concludes that the sender of the packet S
is acting as a controller on behalf of the
devices that are offering a desired service.
The arrival of this packet also means that S
has taken up the responsibility of discovering
downstream services. The coordinator
meanwhile instantiates S in it own copy of
the task graph.

Subtree Confirmations Data
transmission can begin only when
required services have been instantiated.
Since the instantiation process is distributed
and local, the coordinator needs to be
informed when the instantiation is over.
We achieve this by means of subtree
confirmation packets. When all downstream
services rooted at a particular service node
in the task graph have been instantiated, it
propagates a SUBTREE_CONF packet upstream
all the way up to the coordinator. The
coordinator extracts the task graph from
the packet and instantiates the downstream
nodes indicated in the task graph in its own
copy. If all services in its list have been
instantiated then the flow of application data
can begin (Algo-2::33-37). Also, exchange
of periodic heartbeat messages begins
between the coordinator and the controllers
of services in Gy at the top level. This is
for monitoring failures and disconnections
between service instances. We explain this
in further detail in Sec. 3.3.

Interestingly, this process occurs at all
levels of the hierarchy inside every complex
node for completion the instantiation inside
them. The controllers of each service node
serves as the root node akin to the user node
for the entire application. The use of subtree

confirmation results in much less overhead
than individual confirmation sent to the con-
trollers.

Composition and Instantiation of
Complex Downstream Nodes As we
have mentioned earlier in this section, the
Coordinator device is deemed responsible
for instantiating the devices that are
its neighbors at the top level of Gpy.
Instantiation of downstream services needs
to be performed by devices which interface
with those services. Addresses of such
devices within an instantiated service S[m]
can be extracted by the service controller
from the task graph (Algo-4::12), and
those devices can be instructed by the
controller to continue the search downstream
(Algo-4::15). When an interface device
receives a CONTINUE_SEARCH packet, it
executes steps (Algo-4::44-49) similar to the
ones executed by the coordinator device.
Lines 19-43 in Algorithm 4 correspond
to the steps taken for instantiating a down-
stream node. Although these steps and the
corresponding steps of the coordinator algo-
rithm that we have described before are quite
similar in intent, there are some subtle dif-
ferences between them. We illustrate those
differences with an example. Suppose that
a service S with a corresponding task graph
TGy (this may itself be hierarchical) has been
instantiated. We represent the collection de-
vices that have instantiated S by S and the
controller of S by S. Suppose S can form a
more complex service if it uses another service
Z which itself is a complex service. If Z has
been instantiated earlier independently, Z ex-
ists, and so does Z. Now, a from higher level
task graph description G (involving smaller
nodes TGg and TG), S knows its outgoing
interface between S and Z7. Let us denote

"This information is extracted from Gy by ExX-
TRACTINTERFACENODEINFO() at Algo-4::12.

this interface device by Sy. S instructs S; 7 to
search for Z. When S;; broadcasts a query,
Z responds and then upon getting an ACK,
sends a confirmation to S;¢ which relays it to
S (Algo-4::24). The broadcast timeout rules
apply to S;¢ as they apply to the Coordinator
device.

If a controller C of a service at level m
finds that it is at the BFS-root of a complex
node in Gy at depth d in CH and that it
has received SUBTREE_CONF messages from
all controllers C; at level m, it concludes
that a new service S[m + 1] can be composed
and instantiated at depth d — 1 from all
these existing service instances®. This has
been illustrated in Algo-4::34-43. Function
CONSTRUCTSRVNAME() constructs a name
for the complex service using a standardized
convention known to all devices in the
network. After forming this new service
instance, C' assumes the role of the controller
of this service too. It also informs all
controllers C; (available from the variable
InstSrv) that they should change their state
to SRV_MEMBER with respect to S[m + 1].
Also, since the instantiation occurred only
along the edges of the BFS tree of the
appropriate subgraph of Gy, if the latter
has any non-tree edges, the affected interface
nodes should be informed about each other’s
addresses so that they can communicate.
Now, if C' had been queried and all the
above steps happened on-demand, then
after S[m + 1] is formed, C' responds to the
upstream interface node which had initiated
broadcast for S[m + 1]. Otherwise, C' does
nothing and waits to be used.

From the above description of the al-
gorithms, we can see that although their de-
scription is slightly cumbersome due to the
specific details, the basic idea behind the hi-

8Note that in this context depth is an absolute
value in CH which increases as complexity in services
reduces; on the contrary, level is a relative value which
grows as complexity of a composed service increases.

erarchical composition and instantiation of
services is simple and very useful.

3.3 Recovering from Discon-
nections and Disruptions
due to Mobility

Algorithms 2 and 4 describe the process of
instantiation of a hierarchical task graph on
a set of nodes in a MANET. In this section,
we present in detail how these algorithms re-
act to the mobility of devices after the re-
quired services have been instantiated. In a
MANET, if relative mobility of devices is very
low and if the existing network topology does
not change due to mobility, the application
will not be disrupted at all. However, on
most occasions, existing routes can fail due
to mobility of devices owing to the change
in network topology, and that can cause a
temporary disruption in the application. The
underlying MANET routing protocol then at-
tempts to rediscover an alternate route to the
same destination. If the rediscovery happens
quickly then the application does not perceive
a glitch and continues to run smoothly. How-
ever, if the time taken to rediscover an alter-
nate route is large or if a network partition
occurs because of device movement, the ap-
plication is disrupted for a longer timescale.

Therefore, in mobile networks, it is
not sufficient to discover specific instances
of services and appoint them permanently
to execute the application — accessibility
of those service instances needs to be
continually monitored in order to detect
disruptions, and replacement services must
be discovered, if possible, for resuming the
application. Since this can be a regularly
occurring phenomenon in real MANETS,
it is extremely important to augment the
previously mentioned algorithms such that
they can recover from such disruptions as
rapidly as possible. In this section, we

present steps for performing recovery from
such situations.

3.3.1 Detection of Disruptions in Ser-
vice

The first essential step for recovery from a
disruption of service is its detection. Mobility
of devices may cause network partitions or
disconnections, and instantiated devices exe-
cuting a service may no longer be able to com-
municate if all paths between them are bro-
ken. We propose a lightweight, soft-state ex-
change protocol for detecting disconnections
in an instantiated task graph. The protocol
requires the controller device of a service to
send periodic I-AM-ALIVE or HELLO messages
to all other controllers devices that are co-
operatively offering the service at the same
depth in the containment hierarchy. These
controllers reply with a HELLO-ACK message
within a pre-determined period of time T.
This is illustrated in Fig. 4.

A “hierarchically clustered” detection
scheme is favorable in this context instead
of a purely distributed one since most of
the state of a particular service at a given
depth in the containment hierarchy lies
with the controller device for that service.
Also, by limiting the HELLO packet exchange
to controllers of the same containment
hierarchy that are cooperatively offering one
service we actually obtain a scoped detection
scheme, which is more scalable than a
detection scheme applied to a flat graph.

Thus, in Fig. 4, device 1 exchanges
HELLO and HELLO-ACK packets only with de-
vices 2.1 and 3.1, since 1, 2.1 and 3.1 are con-
trollers of service instances 5’1, 5'2 and 5’3, re-
spectively, and they are represented by nodes
that belong to the same depth in the contain-
ment hierarchy of the task graph. Note that
2.1, as the controller device of Ss, also needs
to exchange HELLO and HELLO-ACK packets
with the other controllers, namely, 2.2 and

D Controller Device 1

HELLO/HELLO-ACK PKT EXCHANGE

Containment Hierarchy Depth

DEPTH =0

Service

DEPTH = 1

DEPTH =2

DEPTH =3

Containment Hierarchy

Figure 4: Disruption Detection in a Hierarchical Service Instance

2.3 that cooperatively offer S, together.

The HELLO-ACK packet is sent by the
controller of a cooperating complex service
only when all the constituents of the service
have replied with their HELLO-ACK packets
within the proper time-out period. Thus, in
Fig. 4, 2.1, as the controller of S, would
only send a HELLO-ACK back to 1 when it has
received HELLO-ACK from 2.2 and 2.3 within
the proper time-out period.

This clustered approach reduces the
number of devices that must be tracked si-
multaneously by any single device but obvi-
ously increases the time needed to obtain all
the HELLO-ACK packets from devices that are
further down in the containment hierarchy:.
In this scenario, if we keep a single value
for the time-out period 7', then we run the
risk that, upon meeting a service represented
by a task graph with enough containment
hierarchy levels, the lower level nodes (e.g.,
a device that act as node 3.4.2 in Fig. 4)
will not even have been queried for when the
higher level node controllers (e.g. 1 in the
same figure) suffer time-out. To deal with
this problem, we propose a time-out value
that is proportional to the number of lev-
els left to reach the lowest containment hi-

erarchy level of an instantiated task graph.
Therefore, if d is the current depth level, N
is the lowest containment hierarchy level and
T is the time-out value at the lowest contain-
ment hierarchy level, then the time-out 7'(d)
is (N —d)T. This approach results in a more
frequent packet exchange rate between de-
vices offering simple services than the packet
exchange rate between controllers of complex
services.

If a device requesting a particular
service knows the maximum containment
hierarchy level (e.g., has a hierarchical
task graph representation of the service
composed by simple nodes) then a proper
initial time-out value can be determined
when attempting instantiation. However, if
the maximum containment hierarchy level
is unknown, design criteria or user input
should determine how long to wait before
considering that there are no instances
available of the service.

3.3.2 The Recovery Process

The recovery process is always initiated
by a controller. The controller device of
a complex service that does not receive a

HELLO-ACK from the controller of one of its
constituent simpler services deems that to
be unreachable. Since the constituents of
a complex service are services themselves,
the controller device of the complex service
will attempt to find another instance of the
unreachable constituent service.

In Fig. 4, if device 3.4.2 does
not send HELLO-ACK to 3.4.1 within the
proper time-out period, 3.4.1 will not send
HELLO-ACK back to 3.1, which in its turn
will not send back HELLO-ACK to 1. Because
the time-out period involving 3.4.1 and
3.4.2 is shorter, an attempt to find a new
replacement instance of 3.4.2 will take place
before the time-out period is reached for
3.4.1 and 3.1. In case the replacement is
successfully found, 3.1 will receive a proper
HELLO-ACK within the allotted time interval
and will not be even aware that a recovery
took place?.

This common fate sharing
characteristic of the components of a
complex service in the detection and

recovery processes may arguably not yield
the optimal performance in terms of delays.
However, allowing a partially instantiated
complex service to respond as if it were
fully instantiated means that application
data should then be allowed to be delivered
to that instance, even if the application
data was to be specifically delivered to
the missing component. This introduces
problems of where to store data that were
intended to the missing component. Since
devices in a MANET are more prone to
experience unreachability, the best element
to buffer the original application data is still
their originator. This, added to the fact that
we desire to hide the internal details of a
complex service from the device requesting

9The exception is if the lost service acted as an
interface node in the task graph, in which case the
new instance’s address must be notified.

the service prompt us to treat an instance of
a complex service as a whole, and thus the
fate sharing characteristic.

We should note that this design em-
phasized data delivery. Of course if a higher
value is given to the timely arrival of any
available data, then it is simply a matter of
changing the HELLO-ACK response policy, i.e.,
to respond as long as there is at least one
component of the complex service available.

4 Issues In Performance

Evaluation

In this section, we address issues related to
the performance evaluation the protocols pro-
posed in Sec. 3. We are currently implement-
ing the protocols on a MANET testbed of
laptops and handhelds that we have setup in
our laboratory. In the algorithms presented
in Sec. 3, we have implicitly assumed that the
service instance which is the first to respond
to a broadcast query is instantiated by an
upstream controller device. By this mecha-
nism, the speed of instantiation is maximized.
This can be generalized by defining the notion
of average cost of a service instance. Every
logical node corresponding to a service in a
hierarchical task graph gets mapped onto a
set of physical devices which actually execute
the service. One can define a generalized cost
function f : S — RT where S is the set of
all possible service instances of S that are
currently available in the network. If S is
composed of simpler services, 51,9, ..., Sy,
and the costs of their instances are given by
f(S), ¥ = 1 < i < n, then the cost of? is
given by: f(S) = \Ij(f(sl)v f(SQ)v s 7f(Sn))
The functions f and ¥ can be constructed
so as to reflect any performance character-
istics related to nodes such as load or bat-
tery power, or edge characteristics such as
communication delay, diameter of the net-

work formed by instantiated devices etc. A
slight modification to our current algorithms
is sufficient to incorporate this generic cost
function.

Another performance related issue is
messaging overhead the main source of which
is the broadcast traffic used in during the
discovery phase. This can be controlled by
some standard techniques which were very
briefly discussed in Sec. 3.2.1. However those
are generic techniques for mitigating any kind
of broadcast storm. In addition of using those
techniques, we can use some caching poli-
cies that can be beneficial to the same end.
When a device broadcasts a query for a ser-
vice, several candidate devices can respond to
the query, only one of which is finally selected
and used. However, if we cache all or some
of the addresses that responded to the query,
they can be used in the event of a failure of
the current candidate at a later time. Specif-
ically, if the service instance currently in use
gets disrupted or disconnected, instead of is-
suing another broadcast query, the controller
can communicate with the cached addresses
by unicast to determine which one of them is
currently suitable for use.

If a proactive routing protocol such
as OLSR [10] is used instead of a reactive
one, dependence upon explicit broadcast at
the application level may be greatly reduced
by allowing the devices to advertise their ca-
pabilities along with their routes. However,
owing to the general inefficiency of proactive
protocols in terms of control overhead, in-
teresting comparisons can be made between
these two approaches with respect to total
overhead.

One obvious question that can be
raised about our scheme is that what
happens if all users do not have the entire
hierarchical task graph before starting the
instantiation process. Our argument is that
in a continually used ubiquitous computing
environment, already instantiated services

are expected to exist in the network. In
such a situation, users with incomplete
knowledge of the containment hierarchy can
successfully discover and use those services
as they do not have to compose them on
demand. However, a user who wants to use
a service whose instance does not exist in
the network has to compose the service from
its components and for that it needs deeper
knowledge of the containment hierarchy.
Another factor that can affect the latency of
service discovery is the amount of time for
which a complex service is kept instantiated
after it has been used. If it destroys itself
quickly, then users who arrive into the
system slightly later may have to compose
it again and thus suffer from large latency.
On the other hand if the instance is kept
alive for a long period of time, the network
can suffer from underutilization due to
tying up of the constituent resources of the
service. An adaptive scheme can be useful
here — more popular services can be kept
instantiated for longer periods of time than
less popular ones.

In Sec. 3.3, we mentioned the use of
different timeout values at different depths in
the hierarchy. These timeout values can play
a really critical role in the performance of the
application in terms of its uptime. Hence, the
default values of timeout for every level have
to be carefully set so that a timeout reflects
true disconnection instead of transient behav-
ior. Adaptive timeouts are necessary in or-
der to adapt to changing network conditions
which are common features of a MANET.

The algorithms described in this paper
cater to situations where devices cooperate
to execute a single application desired by a
single user. In future these algorithms will
be augmented to handle multiple instances
of tasks and services on the same network.
A device such as a computing fabric can be
shared by multiple instances of services at
the same time, while a camera device cannot.

Characteristics such as fraction of shareable
devices, and number of instances of a task
in the network can act as interesting input
parameters for performance evaluation.

5 Conclusions and Future
Work

We introduced the concept of distributed ser-
vice composition in the context of mobile ad
hoc networks. We defined service composi-
tion as the process of combining several sim-
pler services to form a meaningful composite
service which can be used by a user or other
such services in a network. These services can
be composed on demand or can self organize
dynamically. After a service is composed on
demand and used, its components retain their
associations for a certain interval of time. If
another user requests the service after the
first one has finished using it but before it
is scheduled to disintegrate, he/she does not
have to compose it on demand. This ap-
proach can lead to better resource utilization,
lower resource and service discovery latency,
and can offer users a powerful abstraction of
being able to query and use higher level ser-
vices even if they do not know its individual
components.

In this paper we presented an
approach for modeling service composition
using hierarchical task graphs. We proposed
distributed algorithms for instantiating
hierarchical task graphs and for handling
disruptions in services due to mobility of
devices. This is only our first step towards
investigating the service composition
problem and we are currently implementing
these algorithms on a MANET testbed as
well as in a network simulator for rigorous
testing.

References

[1] G. Banavar, J. Beck, E. Gluzberg, J.
Munson, J. Sussman, and D. Zukowski,
“Challenges: An Application Model for
Pervasive Computing,” Proc. 6th ACM
MobiCom, Boston, MA, August 2000.

2] P. Basu, W. Ke, and T.D.C. Little,
“A Novel Approach for Execution of
Distributed Tasks on Mobile Ad Hoc
Networks,” Proc. IEEE WCNC' 02, Or-
lando, FL, March 2002.

[3] Bluetooth
http://www.bluetooth.com

SIG,

[4] B. P. Crow, I. Widjaja, J. G. Kim, P.
T. Sakai, “IEEE 802.11 wireless local
area networks,” IEEFE Communications
Magazine, Vol. 35, No. 9, September
1997, pp. 116-126.

[5] S. E. Czerwinski, B. Y. Zhao, T. D.
Hodes, A. D. Joseph, and R. H. Katz,
“An Architecture for a Secure Service
Discovery Service,” Proc. ACM Mobi-
com ’99, Seattle, WA, Aug. 1999.

[6] E. Guttman, “Service Location Proto-
col: Automatic Discovery of IP Net-
work Services”, IEEFE Internet Comput-
ing, July 1999.

[7] Graph XML Specifications.

http://www.cwi.nl/InfoVisu/GraphXML/

[8] Hiperlan-2 Global
http://www.hiperlan-2.com

Forum.

9] T. Hodes, R. Katz, E. Servan-Screiber,
and L. Rowe, “Composable Ad-Hoc Mo-
bile Services for Universal Interaction,”
Proc. 3rd ACM MobiCom, 1997.

[10] P. Jacquet, P. Muhlethaler, A. Qayyum,

A. Laouiti, L. Viennot, and T. Clausen,

[11]

[12]

[13]

[14]

[15]

[16]

“Optimized Link State Routing Pro-
tocol,” Internet-Draft, draft-ietf-manet-
olsr-04.txt, September 2001. Work in
Progress.

D. B. Johnson and D. A. Maltz, “Dy-
namic Source Routing in Ad Hoc Wire-
less Networks”, in Mobile Computing,
edited by Tomasz Imielinski and Hank
Korth, chapter 5, pages 153-181, Kluwer
Academic Publishers, 1996.

C. E. Perkins, E. M. Royer, and S. R.
Das, “Ad Hoc On-Demand Distance
Vector (AODV) Routing,” Internet-
Draft, draft-ietf-manet-aodv-08.txt,
March 2001. Work in Progress.

R. Ramanathan and M. Steenstrup,
“Hierarchically-Organized Multihop
Mobile Networks for Quality-of-service
Support,” ACM/Baltzer Journal on
Mobile Networks and Applications, Vol.
3, No. 2, August 1998.

The Salutation Consortium.
http://www.salutation.org

Sun Microsystems, “Jini Technology
Core Platform Specification,”
http://www.sun.com/jini/specs

The Universal Plug-n-Play Forum.
http://www.upnp.org

