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Abstract–With the increase in the number of computing devices with networking capacity in our

day-to-day environment, much research effort has been spent trying to tap into the full potential of

the resources available. We propose the introduction of a Task layer in the devices. Such layer will

abstract the resources available locally into a pre-defined task description language which can then

be understood by the community of users and be requested and shared when needed.

We developed a centralized version of the Task protocol that can support the resource dis-

covery and management required, in addition to supporting mobility management, thus making our

protocol suitable in mobile ad-hoc networks (MANET) scenarios as well. We conducted perfor-

mance studies of our centralized protocol and we found that: (1) Variable time-out values (which

depend on the number of nodes in the TG) during resource selection process is necessary to suc-

cessfully complete the process, (2) connectivity metrics that do not take application level traffic

patterns into consideration may give inaccurate estimates of application throughput performance,

and (3) procedures that control and estimate the probability of a task graph successfully selecting

enough resources are necessary to reduce redundant traffic that keeps attempting when there are

not enough resources available.

Keywords: Protocol Performance Evaluation, Ad-Hoc Networks, Application Protocols

∗This work was supported by the NSF under grant No. ANI-0073843. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

1



1 Introduction

One paradigm that guided the design of computer network protocols in the past has been the as-

sociation of specific addresses to hosts, by which these hosts can be reached. Therefore, protocols

were concerned with host discovery, and routing of data packets to specific hosts (i.e., addresses).

However, reaching a specific host is only a means to an end, which is to request a service

from the host. With the increase in the number of computing devices in the environment that

surrounds us, services which we want can be fulfilled by many different hosts. Therefore, currently,

research effort has been directed at how to specify applications in terms of the services needed,

which are then automatically transformed into available hosts [1, 2, 3, 4, 5, 6].

We propose modeling an application in terms of a Task Graph (TG), in which the nodes are

computing devices which satisfy certain attributes, and edges are communication channels between

the nodes which satisfy certain QoS requirements. With the application specified as a TG, a new

Task layer would be introduced in the computing devices that would select proper devices and join

them together to execute the application, as well as manage any possible failure during execution.

We proposed two protocols, one centralized [7] and one distributed [8]. For a detailed

explanation of the distributed protocol please refer to [9]. This article details performance studies

of the centralized protocol. For a more complete description of the centralized protocol please

refer to [7].

In this performance study we simulated for scenarios of 100 nodes roaming in square re-

gions of area 1 km2, 2 km2 and 4 km2. The nodes were under the Random Waypoint (RWP)

mobility model [10]. The maximum speedVmax ∈ {1, 5, 10, 15, 20} m/s and the pause timeP ∈
{0, 100}. We studied the performance of the protocol for task graphs (TG) having a binary tree

format, with the number of nodes in the TGN ∈ {3, 7, 15, 31, 63}.

We report on Instantiation Time and Dilation metrics in Sec. 2. Dilation gives us a sense of

how far spread an instantiated TG application is, and we correlate that observation with instantia-

tion times. Sec. 3 reports Re-Instantiation Times and number of Re-Instantiations that took place

during the simulations. These metrics offer a picture of the performance of the recovery process.

Moving on to metrics that affect the application we show results for delay, throughput,

average number of hops traversed and percentage of connected time in Sec. 4. These are indicators

of how well an application may perform when executed on top of our centralized Task protocol.

The final metric we explore is the number of overhead packets used in our protocol in Sec. 5. We
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conclude with some observations regarding design of centralized protocols in MANETs in Sec. 6

2 Instantiation Times, Dilation and Time-Out

In this section we study the behavior for the instantiation times of the different TGs, the dilation of

the embedded task graph and the implications for time-out values. By instantiation time we mean

the period of discovery and selection phases as described in [7]. Figs. 1, 2 and 3 show the scatter

plot of the instantiation times.

We can see in Figs. 1 and 2 that for small number of nodes in the TG (≤ 15) many values

are less than 10 seconds, independent of whether the nodes were in constant movement (pause

time 0) or having pause times of 100 s. In particular, with 3 nodes (and less distinctively with 7

nodes), we can see a bi-modal behavior, in which the instantiation time seems to be either less than

1 second or around 3 seconds. This is the same phenomena as mentioned by [9], the 3 second TCP

time-out value being the cause for the 3 second gap in instantiation times1.

Performance degradation starts when the node density is low (see Fig. 3). Another crucial

factor in performance degradation is the increase in the number of nodes in the TG. In particular,

for the number of nodes equal to 63, there are many instances of instantiation failures, as described

in the figures. We can see that instantiation failures also start with TG with 31 nodes at low density

(Fig. 3).

The centralized protocol assumes the existence of only one controller, which is responsible

for keeping track of the state of the task graph nodes. This means that, for the 31 node case,

one node (the controller) is keeping 30 TCP connections while for the 63 node case, 62 TCP

connections. The time-out value of the task layer protocol is 14 seconds. This implies that for

the instantiation to be completed, within a period of 14 seconds, all 30 (or 62) nodes must have

successfully received an instantiation packet from the controller and have their acknowledgment

packets successfully arrive at the controller. Given that TCP performance drops drastically with

increased number of hops [11], and that the dilation of the instantiated task graph is larger than

one (see Figs. 4–6), the time-out value of 14 seconds is not sufficient for the instantiation to be

successful.

Regarding Figs. 4–6, some observations can be made. Mobility does influence dilation.

It is interesting to see that the average dilation is not 1 even for really small task graphs (3 or 7

1If there is a packet loss in the TCP connection, there is a 3 second time-out value before a retransmission is
attempted.
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Figure 1:Instantiation Times Area = 1 km2.
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Figure 2:Instantiation Times Area = 2 km2.
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nodes). If we consider that the transmission range is 250 m, then in a 1x1 km2 the node density is

10−4 nodes/m2, and the average number of neighbors is 10−4 π 2502 ≈ 19, which is greater than 7.

Dilation has to do with the embedding of the task graph onto a network, but once the nodes have

been selected, unless a time-out takes place, they remain part of the instantiated task graph. This

means that even if initially dilation is one (at instantiation time), with time and mobility, nodes

wander away from their original positions but remain connected as components of the task graph,

which result in dilation values higher than one.

Dilation values show a decrease for large task graphs when mobility increases. This hap-

pens because dilation is only computed for instantiated task graphs. And task graphs that are

successfully instantiated with large number nodes have lower dilation values (if they had higher

dilation values, they would not have been instantiated due to performance degradation of the net-

work + transport layers capacity bottleneck). But at high mobility values, the lower dilation values

are still “stretched” to higher values.

One observation regarding instantiation times and the task time-out value is that insufficient

time-out values increase instantiation times. This happens because at each time-out (that is, every

14 seconds in our case), if a node is not instantiated but is still “alive” (the controller received one

packet from that node in the past 14 seconds), a newINSTANTIATION packet will be sent, with a
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Figure 7:Average Instantiation time for different time-out values

new sequence number (this is to avoid receiving stale acknowledgement packets that were “lost” in

the network when the actual node has already moved away). If an old but valid acknowledgement

packet was in transit when this newINSTANTIATION packet was issued, then even if the ACK

packet does arrive at the controller, it will be regarded as stale, and instantiation will not complete.

Fig. 7 shows that with the increase in the time-out value in a static scenario, the aver-

age instantiation time goes down, and reinstantiation time goes down as well, and the number of

reinstantiations occurs much less frequently (Fig. 8)2.

It is not clearly evident (more simulations are needed) that with the increase on the time-

out values dilation increases, as seen in Fig. 10 though a slight increase can be observed. This

happens because with lower time-out values higher dilation possibilities cannot be instantiated due

to network + transport layer capacity limitations. This shows that a higher time-out value will

have a higher chance of succeeding, and taking on the average less time. The trade-off here is

on mobility detection. A high time-out value implies in a slow mobility detection. One possible

solution is therefore the setting of lower period local time-out values between nodes, which is

matter of future research.
2Note that this is the static scenario. Any re-instantiation is due to the absence of anALIVE packet which got lost.
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Therefore, for instantiating centrally a task graph with varying number of nodes, an accu-

rate time-out value estimation algorithm must be developed. A static time-out value essentially

becomes the limiting factor on the size of the possible task graphs.

3 Re-Instantiation Times and Number of Re-Instantiations

To obtain an idea of the recovery process, together with the re-instantiation times we also plot the

number of reinstantiations that took place in our simulation runs.

The decrease in the number of re-instantiations as the number of nodes in the TG increases

in Fig. 11 is due to the fact that many reinstantiations did not finish once started. That is, once a

reinstantiation happens, until it is completed, it is counted only one time. Since we simulated for

600 seconds, with the instantiation process starting at 200 second value, there could not have been

many reinstantiations.

Again, if we exclude the 63 node case and the sparsely populated case (scenario of 100

nodes roaming in a 2x2 km2 area), the reinstantiation times are below 20 seconds (Fig. 12 and 13)

for most cases. We can notice that by decreasing node density, the average reinstantiation times
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Figure 13:Re-Instantiation Times Area = 2 km2

14



0 5 10 15 20
0

5

10

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=3

1 ReInst of 14.5s at 5m/s omitted
1 ReInst of 11.7s at 10m/s omitted

pt=0

0 5 10 15 20
0

5

10

15

20

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=7

1 failure at 1m/s omitted
1 ReInst of 30.7s at 10m/s omitted

pt=0

0 5 10 15 20
0

5

10

15

20

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=15

1 ReInst of 44.7s at 1m/s omitted
2 ReInst of 48.4s and 32.9s at 15m/s omitted

pt=0

0 5 10 15 20
0

10

20

30

40

50

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=31

1 failure at 15m/s omitted
1 ReInst of 62.1s at 20m/s omitted

pt=0

0 5 10 15 20
0

100

200

300

Max Speed (m/s)

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=63

2 failures at 10m/s omitted
9 failures at 15m/s omitted
7 failures at 20m/s omitted

pt=0

0 5 10 15 20
0

5

10

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=3

3 ReInst of 31.3s, 84s, 98.2s at 1m/s omitted
2 ReInst of 17.6s, 24.1s at 15m/s omitted

pt=100

0 5 10 15 20
0

5

10

15

20

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=7

2 ReInst of 49.6s and 105.8s at 5m/s omitted

1 ReInst of 56.1s at 15m/s omitted

pt=100

0 5 10 15 20
0

5

10

15

20

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=15

2 ReInst of 29.9s and 81.4s at 5m/s omitted
3 ReInst of 36.2s, 37.1s and 325s at

15m/s omitted

1 ReInst of 63.3s at 20m/s omitted

pt=100

0 5 10 15 20
0

10

20

30

40

50

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=31

1 ReInst of 323s at 5m/s omitted

1 failure at 15m/s omitted
1 ReInst of 61.1s at 20m/s omitted

pt=100

0 5 10 15 20
0

100

200

300

Max Speed (m/s)

R
e−

In
st

T
im

e 
(s

ec
)

C − #TGNodes=63

4 failures at 5m/s
1 failure at 10m/s
3 failures at 15m/s
9 failures at 20m/s

pt=100

Figure 14:Re-Instantiation Times Area = 4 km2
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fluctuates more with increased mobility (Fig. 14). This shows that while highly populated areas

are more prone to congestion problems, the performance of the communication channels between

a source and destination pair is less dependent on the overall mobility.

This in fact suggests an “optimal” traffic pattern and/or transport control mechanism, once

given a “density” condition. In highly populated areas, traffic should be controlled at source, and

retransmissions should not be too frequent, while at less populated areas retransmissions should

be scheduled in shorter periods, so as to detect if a new route exists (i.e., a node roamed in such a

way that a path between source and destination has been established) to the desired destination.

4 Delay, Throughput, Hops traversed and Percentage Connected

In this section we plot the performance with respect to the metrics of delay and throughput of the

application data units (ADU) packets. Delay is measured only of packets that successfully reach

their destinations. Throughput is measured in terms of the percentage of the packets which reach

their final destinations over the total number of packets that should have reached their sinks. We

show also the average number of hops the ADU packet traversed in order to reach the destination.

The percentage connected time is based on sampling the controller at Poisson Arrival times and

checking whether the controller believes the task graph to be connected or not. It basically reflects

the view the controller has of the task graph application. If it sees the application as mainly

disconnected, continuous effort will be given to connect and/or reinstantiate. Due to the PASTA

principle3 [12], this metric can be used in QoS services at the controller, to decide whether a

task graph should be (re)instantiated or aborted when the percentage connected time is below a

threshold.

We include a 2 dimensional plot of the effective throughput, delay, hops traversed and a

percentage connected time metric in Figs. 15-26.

The lower delay values (Figs. 15, 17 and 19), and corresponding lower number of hops

traversed (Figs. 16, 18 and 20 for high speed and large task graph (63 nodes) is due to the fact that

only successfully delivered packets are counted towards computing the two metrics above, and in a

highly mobile network, the packets that are successfully delivered (note the very low corresponding

throughput) are exactly those that suffer low delay and which crossed very few hops. Throughput

in all cases drops with the increase of the number of nodes in the task graph and with mobility

3Poisson Arrivals See Time Averages - basically the percentage of times an observed variable is in a given state
when observed according to a Poisson arrival process approaches the real percentage value assymptotically.
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Figure 15:Centralized Protocol - Average Delay for Area = 1 km2
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Figure 17:Centralized Protocol - Average Delay for Area = 2 km2
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Figure 18:Centralized Protocol - Average Number of Hops traversed for Area
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Figure 19:Centralized Protocol - Average Delay for Area = 4 km2
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Figure 20:Centralized Protocol - Average Number of Hops traversed for Area
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Figure 21:Centralized Protocol - Average Effective Throughput for Area = 1
km2

(Figs. 21, 22 and 23). Throughput is almost zero for the 63 node case.

A very interesting question comes up when we see the average percentage of connected

time (Figs. 24, 25 and 26) and relate them to the average throughput. One would believe that

they should reflect similar values, since the average throughput depends on the connectivity of the

instantiated task graph.

The key point here is that throughput is measured per packet, while connectivity is a state

that depends on all the nodes. In other words, the application is deemed disconnected even if only

one node is disconnected, but the disconnected node may not lie on the path of the data packet,

and thus throughput can still be one. Conversely, a task graph can be fully “connected,” and yet

still not have throughput. This can happen when all nodes successfully exchangeALIVE packets

with the controller but there is a local time-out period between two neighboring nodes. In this case

a data packet in transit will get dropped, but the controller will not observe the disconnectivity.

We can see from these observations that a key metric to throughput in a task graph is not

connectivity only, but connectivity between source and destination. In other words, the require-

ments on the connectivity of the whole task graph may be too stringent a requirement for specific

applications that do not utilize paths between all member nodes. In other words, the study of the
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Figure 22:Centralized Protocol - Average Effective Throughput for Area = 2
km2
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Figure 23:Centralized Protocol - Average Effective Throughput for Area = 4
km2
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Figure 24: Centralized Protocol - Average Percentage Connected Time for
Area = 1 km2
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Figure 25: Centralized Protocol - Average Percentage Connected Time for
Area = 2 km2
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Figure 26: Centralized Protocol - Average Percentage Connected Time for
Area = 4 km2

connectivity and suitability of running (instantiating) a task graph on a MANET depending on the

connectivity should take into consideration the traffic pattern as one key factor.

5 Overhead

In this section we show the overhead of our protocol. We plot the graphs with respect to the number

of original broadcast packets (Fig. 27), forwarded broadcast (Fig. 28) and unicast packets (Fig.

29) needed for running our centralized protocol as defined in [9].

From our graphs, we can see that large task graphs are impacted more by mobility as far as

original broadcast packets are concerned. For lower density areas (roaming areas of 2 and 4 km2)

there is a direct increase in the number of broadcast needed and the number of nodes in the task

graph.

Original broadcast packets are transmitted from the controller only. The controller performs

an increased ring search when not enough nodes answer to their initialization packets. When the

node density is low, increased broadcasts are necessary. Also during reinitialization stages an origi-

nal broadcast is performed. Essentially, the higher the number of reinitialization + reinstantiations,
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the higher the number of original broadcasts (and consequent forwarded broadcasts) and unicast

packets. Many of the packets may well be considered hopeless attempts in an impossible scenario

(especially considering the 63 node case), a specific admission control mechanism is necessary to

avoid such redundant traffic.

6 Conclusion

We have found that time out values need to be adjusted to accomodate increasingly large number

of nodes if a centralized control is desired. To deal with mobility, localized mobility detection

mechanisms may be put in place, but this is a matter for future research. Also, to examine only

the “connectivity” of a set of nodes misses out on the fact that not all paths need be present and

connected at all times. Linking the traffic pattern to throughput and/or connectivity studies would

yield much more adequate results. The increase of overhead packets when attempting to instantiate

large task graphs and highly mobile scenarios suggest that an admission control mechanisms, based

on the variables of the environment observed, coupled with variables such as time out values, traffic

characteristics, would save effort in attempting to instantiate a task graph when the probability of

success is absurdly small.
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Figure 27:Centralized Protocol - Original Broadcast Packets for Area∈ {1,
2, 4} km2 and Pause Times∈ {0, 100}.
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Figure 28:Centralized Protocol - Forwarded Broadcast Packets for Area∈
{1, 2, 4} km2 and Pause Times∈ {0, 100}.
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Figure 29:Centralized Protocol - Unicast Packets for Area∈ {1, 2, 4} km2

and Pause Times∈ {0, 100}.
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