
Server-Based Service Aggregation Schemes for
Interactive Video-on-Demand1

P. Basu, T.D.C Little, W. Ke, and R. Krishnan

Department of Electrical and Computer Engineering

Boston University, Boston, Massachusetts 02215, USA

(617) 353-9877

{pbasu,tdcl,ke,krash}@bu.edu

MCL Technical Report No. 09-01-2002

Abstract– The support of independent VCR-like interactions in true video-on-

demand systems is resource intensive and in the worst case requires a separate

channel for each user. A variety of techniques have been proposed to reduce resource

requirements by aggregating users into groups. Recent research efforts have focused

on client based aggregation owing to the massive reduction in prices of memory and

storage. However, with the evolution of new computing paradigms such as pervasive

computing, in which streaming media are anticipated and portable clients do not

have enough buffering capacity or good network connectivity, we believe that the

importance of server-based aggregation schemes will increase. Since such schemes do

not assume any end-client capacity requirements, they are the logical candidates for

enabling efficient VoD service in heterogeneous pervasive computing environments.

Clustering of users by bridging the temporal skews between them is one such

server based service aggregation technique. In this chapter we present a survey of

recurrent problems in stream clustering and discuss optimal solutions with a goal of

minimizing average bandwidth. We show that for dynamic interactive scenarios in

1In Handbook of Video Databases: Design and Applications, Borko Furht and Oge Marques, Eds,
CRC Press, Boca Raton, FL, 2004, pp. 927-960. This work is supported by the NSF under grant
No. NCR-9523958 . Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

which streams can break away from clusters, given perfect prediction, the problem is

isomorphic to the Rectilinear Steiner Minimal Arborescence (RSMA) problem which

has been recently proved to be NP-hard. Since the RSMA model relies on some

unrealistic assumptions, we also review heuristic techniques, which are essentially

periodic invocations of the statically optimal algorithm, and show results of their

performance evaluation. We demonstrate that the heuristic algorithms perform

reasonably well in dynamic situations. These algorithms are general across a large

class of implementation architectures and aggregation techniques.

We also describe a modeling of an interactive VoD system using stochastic dynamic

programming with an average cost formulation. However, the size of the state space

makes the optimization problem impractical, and we resort to other variants of

RSMA such as predictive RSMA, and periodic RSMA with the same frequency as

that of the mean of aggregate event process. We show that the former does not

improve performance by much, and the latter performs better than other variants of

the algorithm.

Keywords: Interactive video-on-demand, dynamic service aggregation, stream clustering,

dynamic programming.

2

1 Introduction

Interactive video-on-demand (i-VoD) describes one of the most attractive applications

that have been proposed since the rapid advances in high speed networking and

digital video technology. Principal deterrents to the widespread deployment of i-VoD

services are the cost of data storage server and network capacity to the end user.

Because of the data-intensive and streaming nature of video data, fully provisioned

interactive channels are prohibitively expensive to deploy. Service aggregation schemes

attempt to alleviate these problems by sharing both server and network resources

at the expense of small overheads in terms of delay and/or buffer space. Many

techniques exist in the VoD literature (although some of them only support non-

interactive VoD) – Batching [6], server caching [24, 7], client caching or bridging [1]

and chaining [22] (a limited form of distributed caching), rate adaptive merging [11],

content insertion [17, 25], content excision [25], periodic broadcasting [14], and

patching [13, 8], to name a few.

A major bottleneck in the delivery of video is on the disk-to-server path. Interval-

Caching solutions [7] attempt to minimize the bandwidth required on this path

by caching intervals of video between successive disk accesses and then by serving

subsequent requests from the cache. These schemes do not however, attempt to

minimize the network bandwidth on the subsequent server-to-client path.

Clustering schemes, in contrast, seek to minimize this network bandwidth by

aggregating channels that are identical except for their potentially disparate start

times. That is, they are ”aggregatable” if their skew is within some bound, or

their skew can be eliminated2. Batching is a clustering technique in the near-

VoD scenario, in which users must wait until the next launch of a stream occurs.

A more attractive technique for the end user is a technique called rate adaptive

merging [11, 16] in which a user acquires a stream without any waiting time; however,

the system attempts to aggregate streams within a skew bound by minimally altering

2Skew is defined as the difference in program positions at current instant of time of two video
streams containing the same program.

3

the “content progression rates” of a subset of these streams. Experiments have shown

that speeding up a video stream by approximately 7% does not result in a perceivable

difference in visual quality [17, 4], giving credibility to this approach. A trailing

stream, or streams, can be accelerated towards a “leading” stream, or streams, until

both of them are at the same position in the program (or equivalently, their skews

are zero) [16]. At this instant of zero skew, all users attached to the stream (e.g., via

multicasting to multiple destinations and users) are served by a single stream from

the video source.

Both batching and rate adaptive merging have the advantage of having the burden

of implementation fall mainly on the server and partly on the network (through the

ability to support multicast), with no extra requirement on the client except that it

be able to display the data received and send back control signals (to make requests

and perform VCR-like operations). This means that potentially “true-VoD” service

can be extended even to wireless handheld devices that do not have a large storage

capacity but which are connected to the network. Client based aggregation schemes

which require clients to buffer video from multiple staggered broadcast channels [14,

13, 8] are thus unsuitable for heterogeneous pervasive computing environments.

It is also desirable to reduce the buffering requirement for interval caching schemes.

This requirement is dependent on the skews between streams carrying the same

content. Therefore, bridging the skew and/or reducing the number of streams by

clustering can also reduce the memory requirement of a caching scheme. A continuum

of aggregation schemes which lie between pure caching and pure clustering exist. Tsai

and Lee [25] explore this relationship in the near-VoD scenario. Therefore, one can

extend solutions for clustering to buffer management and vice versa. In this chapter,

we focus on clustering schemes.

In hybrid CATV architectures that consist of the standard broadcast delivery

mechanism augmented with on-demand channels, stream merging is used in schemes

like Patching [8] in order to reclaim the on-demand channels. The described clustering

algorithms are applicable in such scenarios as well.

4

The scope for aggregation of video streams is ameliorated by the long-lived nature

of video traffic and the high density of accesses on popular titles (e.g., hit movies)

during certain times of the day. By clustering streams during peak periods, a system

can accommodate a much larger number of users as than without aggregation,

thus increasing potential revenue earned. Therefore, in any VoD system where

peak demands are higher than the available bandwidth, aggregation schemes are

attractive. This is particularly true of scenarios that commonly arise with Internet

traffic and content. For example, when a popular news item is made available by a

news provider, the peak demand can far outstrip the available network bandwidth,

thus making aggregation increasingly attractive.

Because resource sharing by aggregating users is a promising paradigm for VoD

systems supporting large user populations, it is useful to study its inherent complexity.

Irrespective of whether we are trying to use rate adaptive merging or content insertion

or using “shrinking” to reduce buffer usage for caching, the underlying clustering

problem remains the same. In this chapter, we take a systematic approach to

formulating these clustering problems and discuss the existence of optimal solutions.

These algorithms are general across a large class of implementation architectures as

well as aggregation techniques.

From a performance engineering standpoint, one must not lose sight of the fact

that simpler solutions while provably sub-optimal can at times be preferable due to

simplicity, elegance or speed. Often, they can be necessitated by the fact that optimal

solutions are computationally expensive or intractable. In such cases, the engineering

approach is to seek good approximate or heuristic alternatives that provide near-

optimal solutions. With this in mind, we present optimal solution approaches and

also investigate when such sophisticated algorithms are warranted by the application

under consideration. In the “static” version of the problem, clusters of users receiving

the same video content are formed but it is assumed that the users cannot break away

after their streams have been merged with others in a cluster. If we allow the users

to break away from their clusters by interacting, the gains due to aggregation will

be lost. Hence, dynamic approaches are necessary for handling these interactive

5

situations. We present some such approaches and also explore how far the gains

from an optimal solution in the static case are retained in dynamic scenarios. Our

performance results can be readily applied to the related capacity planning and design

problem, that is, given the mean arrival (and interaction) rate and distribution, what

should the design capacity be, in number of streams, of a video-server network which

actively uses service aggregation?

We transform the static clustering problem (with the objective of minimizing

average bandwidth) to the RSMA-slide problem (terminology used by Rao et al. [21]).

An important observation here is that an RSMA-slide on n sinks is isomorphic to

an optimal binary tree on n leaf nodes. Aggarwal et al. have described an optimal

binary tree formulation in reference [2], but we describe a more general approach that

can model additional interactive scenarios. By periodically recomputing the RSMA-

slide with small a period, we can reclaim up to 33% of channel bandwidth when

there are 1, 250 interacting users in the system watching 100 programs, in steady

state. We compare the RSMA-slide algorithm with other heuristic approaches and

find it to be the best overall policy for varying arrival and interaction rates of users.

We also find that under server overload situations, EMCL-RSMA (forming maximal

clusters followed by merging by RSMA-slide in the clusters) is the best policy as

it releases the maximum number of channels in a given time budget, consuming

minimum bandwidth during the process. We also investigate some variants of the

RSMA-slide algorithm such as event-triggered RSMA, Stochastic RSMA etc. and

compare their performance with the RSMA-slide.

Related Work The static stream clustering problem has been studied by Aggarwal

et al. [2] and Lau et al. [18]. The latter provides a heuristic solution for the problem

while the former discusses an optimal solution based on binary trees. Neither discuss

how to accommodate user interactions although Aggarwal et al. consider implications

of user arrivals. Basu et al. investigate the stream clustering problem from a user

arrival/interaction standpoint with early performance results [3].

6

An important contribution of this work is the inclusion of user arrivals and

interactions into the stream clustering model and showing that iterative application

of optimal static algorithms in a controlled fashion can preserve most of the gains

in dynamic interactive situations too. We use a different problem formulation that

allows us to model most interactive situations although in the static case it reduces

to the optimal binary tree formulation in [2]. We point out that the problem

of freeing maximum number of channels under server-overload is different from

minimum bandwidth clustering problem and that our algorithm Earliest Maximal

Clustering, also known as EMCL [17] is optimal in the static case. We perform

extensive simulations over a wide range of parameters and a number of different

clustering policies. We also demonstrate that the optimal re-computation period

depends not only on the rates of arrival and interaction but also on the specific

policy used.

Another contribution of this work is an attempt to formulate the dynamic stream

clustering problem as a Stochastic Dynamic Programming problem, although that

resulted in a few negative results. To the best of our knowledge, this is the first

approach of its kind in this domain, and we believe that our preliminary findings

will spur the VoD research community to find better solutions in this space. We

also present an approximate analytical technique for predicting the average number

of streams in such an aggregation system in steady state, and demonstrate that the

analytical results are reasonably close to the simulation results.

The remainder of the chapter is organized as follows. In Section 2, we formulate

the clustering problem mathematically, and consider optimal algorithmic solutions.

Section 3 introduces a stochastic dynamic programming approach to tackle the

dynamic stream clustering problem. In Section 4 we present the results of simulations

of heuristic and approximate algorithms for clustering. In section 5 we conclude with

our recommendations of clustering algorithms that should be used for aggregation

in interactive VoD systems.

7

2 Stream Clustering Problems

Here we characterize the space of on-demand video stream clustering problems by

formulating a series of sub-problems. We provide optimal solutions for some of these

sub-problems and present heuristic solutions derived from these optimal approaches

for the remainder.

2.1 General Problem Description

A centralized video-server stores a set of k movies M = {M1, M2, . . . Mk}, each having

lengths `1, `2, . . . , `k respectively. It accepts requests from a pool of subscribers for

a subset of these stored movies and disseminates the content to the customers over

a delivery network which supports group communication (e.g., multicast). Assume

that the movie popularity distribution is skewed (non-uniform) obeying a probability

distribution P (.). Each popular movie can be played at two different content progression

rates r (normal speed) and r +∆r (accelerated speed). Accelerated versions of these

movies are created by discarding some of the less important video frames (e.g., B

frames in the MPEG data stream) by the server on the fly. If the frame dropping

rate is maintained below a level of ≈ 7%, the minor degradation of quality is not

readily perceivable by the viewer [16, 4].

There is an opportunity to reclaim streaming data bandwidth if skewed streams

of identical movies are re-aligned and consolidated into a single stream. This can

be achieved by the server attempting to change the rate of content progression (the

playout rate) of one or both of the streams.

There are several means of delivering the same content to a group of users using

a single channel. Multicast is a major vehicle for achieving this over the IP networks.

But because it has not been widely deployed in the general Internet, another scheme

called IP Simulcast can be used to achieve the same goal by relaying or repeating

the streams along a multicast tree [9]. If the medium has broadcasting capabilities

8

(such as cable TV channels) multicast groups can be realized by means of restricted

broadcast.

The term clustering refers to the action of creating a schedule for merging a

set of skewed identical-content streams into one. The schedule consists of content

progression directives for each stream at specific time instants in the future. For

large sets of streams, the task of generating this schedule is computationally complex

and is exacerbated by the dynamics of user interactions to achieve VCR functions

such as stop, rewind, fast-forward, and quit. It is clear that efficient algorithms for

performing this clustering are needed for large sets of streams. The term merging

refers to the actual process of following the clustering algorithm to achieve the goal.

T1

T2

T3

T4

(1)

(2)

position in movie

movie length

L

time

(0, 0)

pause

normal

accel

snapshot

N(t) = 6

N(t) = 4

Figure 1: Aggregation of Streams

A general scenario for aggregation of video streams with clustering is outlined

below. At time instants Ti the server captures a snapshot of the stream positions

9

– the relative skew between streams of identical content – and tries to calculate

a clustering schedule using a clustering algorithm CA for aggregating the existing

streams. Aggregation is achieved by accelerating a trailing stream towards a leading

one and then merging whenever possible. Changing the rates of the streams is

assumed to be of zero-cost and the merging of two streams is assumed to be seamless.

Viewers, however, are free to interact via VCR functions are cause breakouts of

the existing streams. That is, new streams usually need to be created to track

the content streaming required for the VCR function. Sometimes these breakouts

are clusters themselves when more than one viewer initiates an identical breakout.

The interacting customers are allocated individual streams, if available, during their

interaction phase but are attempted to be aggregated at the next snapshot epoch.

We restrict our discussion to the VCR actions of fast-forward, rewind, pause,

quit.

Figure 1 illustrates the merging process. Here the lifespans of several streams

receiving the same content are plotted over time. The horizontal axis denotes the

position of a stream in the program and the vertical axis is the time line. The

length of the movie is assumed to be L as indicated by the vertical line on the right.

Streams are shown in one of the following three states: normal playback, accelerated

or paused. Accelerated streams have a steeper slope than the normal streams because

they move faster than the latter. Paused streams have infinite slope because they

do not change their position with time. Between time 0 and T1 all arriving streams

progress at a normal rate.

The first snapshot capturing positions of existing streams occurs at time T1. At

this time a clustering algorithm is used to identify the clusters of streams that should

be merged into a single stream (per cluster). The merging schedule is also computed

within each cluster. Different algorithms can be applied for performing the clustering

and merging (see Section 4). When new users arrive in between snapshots they

are advanced at a normal rate until the next snapshot when the merging schedule

is computed again and the streams are advanced according to the new clustering

schedule. The clusters and the merging schedule are computed under an assumption

10

that no interactions will occur before all the streams merge. But because the system

is interactive, users can interact in the middle. If a user interacts, on a stream which

is carrying multiple users, a new stream is allocated while the others on the stream

continue. Case (1) in the figure demonstrates this phenomenon. However, if the

only user on a stream interacts, the server stops sending data on the previous stream

because it does not carry any user anymore. This is illustrated by case (2) in the

figure. N(t) denotes the number of streams existing in the system at a time instant

t.

A state of a non-interacting stream Si can be represented by a position-rate tuple

(pi, ri), where pi ∈ <+ is the program position of the ith stream, measured in seconds

from the beginning of the movie and ri ∈ {r, r +∆r} is the content progression rate.

The state equation is given by:

pi(t + ∆t) = pi(t) + ri(t)∆t (1)

and ri(t) is determined by the clustering algorithm CA. Note that in this discussion,

time is measured in continuous units for simplicity. In reality, time is discrete

as the smallest unit of time is that required for the play-out of one video frame

(approximately 33 ms for NTSC-encoded video).

As an example of a merge, consider streams Si (rate r) and Sj (rate r + ∆r). If

they can merge in time t, then the following will hold:

pi + rt = pj + (r + ∆r)t (2)

t =
pi − pj

∆r
(3)

The most general problem is to find an algorithm CA that minimizes 1
T

∫ τ+T

τ
N(t)dt;

the average number of streams (aggregated or non-aggregated) in the system in a

time interval [τ, τ + T] for given arrival and user interaction rates. The space of

optimization problems in this aggregation context is explored next.

11

2.2 Clustering Under a Time Constraint

There is a streaming bandwidth overload scenario that exists when too many users

need unique streams from a video server. This scenario arises when many users

interact simultaneously, but distinctly, or when a portion of a video server cluster

fails or is taken offline. The objective of a solution for this scenario is to recover the

maximum number of channels possible within a finite time budget, by clustering

outstanding streams. We assume that interactions are not honored during the

recovery period because the system is already under overload.

Maximizing the number of channels recovered is desirable because it enables us

to restore service to more customers and possibly to admit new requests. Recovery

within a short period of time is necessary since customers will not wait indefinitely

on failure. It is possible to mask failures for a short period of time by delivering

secondary content such as advertisements [17]. This period can be exploited to

reconfigure additional resources. However reconfigurability adds substantially to

system costs and additional resources may not be available.

Optimal stream clustering under failure can be solved easily in polynomial time

and a linear-time algorithm using either content insertion or rate adaptive merging is

described in reference [17]. This algorithm, called EMCL (Earliest Maximal CLuster)

starts from the leading stream and clusters together all streams within the time

budget, then repeats the process by starting from the next stream ahead until the the

final, trailing stream, is reached. A more general class of one-dimensional clustering

problems has been shown to be polynomially solvable [12].

Three points are worth noting here. Firstly, the EMCL algorithm can be applied

when both content insertion and rate adaptation are used. The number of channels

recovered by the algorithm is non-decreasing with increase in the time budget. Using

both techniques has the same effect as increasing the time budget when using one

technique alone. Therefore we can apply the same algorithm. We will see later that

this property does not generalize to other optimization criteria.

12

Secondly, this algorithm is not affected if some leading streams will reach the

end of the movie before clustering. By accelerating all streams that are within the

time budget from the end of the program and then computing the clustering for the

remaining streams, we can achieve an optimal clustering.

Thirdly, iterative application of this algorithm does not provide further gains

in the absence of interactions, exits, or new arrivals. In the dynamic case, the

average bandwidth, in number of channels, used during clustering is of consequence.

We consider this average bandwidth minimizing constraint and dynamicity in the

following sections.

2.3 Clustering to Minimize Bandwidth

Another goal for clustering is to minimize the average bandwidth required in the

provisioning of a system. This can be measured by the number of channels per

subscriber and is more interesting and applicable from a service aggregation perspective.

A special case of this problem occurs when we wish to construct a merging schedule

at some instant that uses minimum bandwidth to merge all streams into one to carry

a group of users. Ignoring arrivals, exits, and break-aways due to interaction, the

problem has been approached heuristically by Lau et al. [18] and analytically by [3].

The problem can be readily transformed into a special case of the Rectilinear

Steiner Minimal Arborescence (RSMA) problem [3], which is defined by Rao et

al., [21] as:

Given a set N of n nodes lying in the first quadrant of E2, find a minimum

length directed tree (called Rectilinear Steiner Minimal Arborescence, or

RSMA) rooted at the origin and containing all nodes in N , composed

solely of horizontal and vertical arcs oriented from left to right and from

bottom to top.

The transformation is illustrated in Figure 2 with a minor difference that an up

13

i

k

k+1

sinks

j

normal

fast

normal

fast

sinks form
a slide

RSMA = binary tree

merging tree

Time

Time

leader

leader

trailertrailer Program Position

Figure 2: Minimum Bandwidth Clustering

arborescence – a directed tree with arcs directed towards the root – is used instead. In

the figure on the left, the shaded dots denote the stream positions at the time instant

corresponding to the beginning of the snapshot. Each stream has a choice of either

progressing at a normal speed (larger slope in the figure) or at an accelerated speed

(smaller slope). In the optimal tree, the absolute trailer must always be accelerated

and the absolute leader must always be retarded, and the two lines corresponding to

them will meet at the root. In Steiner tree terminology the shaded dots (∈ N) are

called sinks. The RSMA is denoted in the figure on the right as a rooted directed

tree (the arrow directions have been reversed for a better intuitive feel).

In the RSMA formulation, normal streams move horizontally whereas the accelerated

streams move vertically. The leader always remains horizontal and the trailer vertical.

The sinks lie on a straight line of slope = -1 and the final merge point which is the

root of the RSMA is at the origin. This transformation leads to a special case of

the RSMA problem in which the sinks form a slide. The slide is a configuration

without a directed path from one sink to another (i.e., there are no sinks in the

interior of the rectilinear grid (called a Hanan grid). Note that this special case of

the problem has an optimal sub-structure that is lacking in the general case, and

finding the min-cost RSMA spanning n sinks is equivalent to finding an optimal

cost binary tree on n leaf-nodes or an optimal bracketing sequence. The number of

14

binary trees on n leaf-nodes (or RSMAs with n sinks forming a slide) is given by the

(n− 1)st Catalan number, 1
n

(
2n−2
n−1

)
. Although this constitutes an exponential search

space, the special structure of the problem allows us to compute an optimal binary

tree using a dynamic programming (DP) algorithm of complexity O(n3) [21]. One

can easily verify that the RSMA for the particular placement of sinks in Figure 2 is a

minimum length binary tree. We call the DP algorithm RSMA-slide in this chapter.

normal normal normal

normal

fast fast

fast

fast

intermediate

(a) (b) (c)

Figure 3: Merging with More than Two Rates

One point to be noted here is that from an optimality standpoint, more than

two content progression rates are not needed. Fig. 3 illustrates the situation. A

line segment with a higher Cartesian slope has a higher content progression rate. In

Fig. 3(a), three rates are used for content progression and the streams yield a single

meeting point. Clearly the merging trees in Figs. 3(b-c) have lower cost in terms of

bandwidth used than the previous one, because a merge occurs earlier in those two

cases. Therefore, two content progression rates are sufficient for rate adaptation.

Now, we describe the RSMA-slide algorithm which is based on optimal binary

trees [2]. Let L be the length of the movie that is served to streams i, . . . j, with

pi > pj. P (i, j) denotes the optimal program position where streams i and j would

merge and is given by:

P (i, j) = pi, i = j (4)

= pi + r × pi − pj

∆r
, i 6= j (5)

Let T (i, j) denote an optimal binary tree for merging streams i, . . . , j. Let Cost(i, j)

denotes the cost of this tree. Because this is a binary tree, there exists a point k

15

such that the right subtree contains the nodes i, . . . , k and the left subtree contains

the nodes k + 1, . . . , j. From the principle of optimality, if T (i, j) is optimal (has

minimum cost) then both the left and right subtrees must be optimal. That is, the

right and left subtrees of T (i, j) must be T (i, k) and T (k + 1, j). The cost of this

tree is given by

Cost(i, j) = L− pi, i = j (6)

= Cost(i, k) + Cost(k + 1, j)−max(L− P (i, j), 0), i 6= j (7)

and the optimal policy merges T (i, k∗) and T (k∗+1, j) into T (i, j), where k∗ is given

by

k∗ = argmini≤k<j{Cost(i, k) + Cost(k + 1, j)−max(L− P (i, j), 0))} (8)

Here Cost(i, k) and Cost(k + 1, j) are the costs of the right and the left subtrees

respectively, calculated until the end of the movie.

We begin by calculating T (i, i) and Cost(i, i) for all i. Then, we calculate T (i, i+

1) and Cost(i, i+1), then T (i, i+2) and Cost(i, i+2) and so on, until we find T (1, n)

and Cost(1, n). This gives us our optimal cost. The algorithm can be summarized

as follows:

Algorithm RSMA-slide
{

for (i = 1 to n)
initialize P (i, i), Cost(i, i) and T (i, i) from equations 4 and 6

for (p = 1 to n− 1)
for (q = 1 to n− p)
Compute P (q, q + p), Cost(q, q + p) and T (q, q + p) from equations 5, 7 and 8

}

There are O(n) iterations of the outer loop and O(n) iterations of the inner loop.

Additionally, determination of Cost(i, j) requires O(n) comparisons in the argmin

step. Hence, the algorithm RSMA Slide has a complexity of O(n3). Therefore, we

16

conclude that the static clustering problem has an optimal polynomial time solution,

in contrast to the conclusion of Lau et al. [18]. Note that in practice, n is not likely

to be very high, thus making the complexity acceptable.

Although optimal binary trees are a direct way to model this particular problem

(where there are no interactions), the RSMA formulation offers more generality as

we shall explain in later sections. Recently, Shi et al. proved that the min-cost

RSMA problem is NP-Complete [23]. However, before RSMA was proved to be NP-

Complete, Rao et al. had proposed a 2-approximation algorithm of time complexity

O(n log n) for solving the RSMA [21].

Minimum bandwidth clustering can be used as a sub-scheme to clustering under

a time budget, so that channels are released quickly thereby accommodating some

interactivity. This technique can speed up computations in a dynamic scenario,

in which cluster re-computation is performed on periodic snapshots. The time-

constrained clustering algorithm has linear complexity and the dynamic programming

algorithm of cubic complexity needs to be run on a smaller number of streams.

Simulation results for these are shown in Section 4.

2.4 Clustering with Arrivals

Relaxing the preceding problem to include stream arrivals, but not exits nor other

interactions, we consider continue the investigation of the problem space. Suppose we

could have a perfect prediction of new stream arrivals. The problem again transforms

to the RSMA-slide formulation. Although the sinks do not lie on a straight line, they

would still form a slide (e.g., the two points at the bottom right corner of Fig. 4

form a slide along with the points lying towards their left in the exterior of the

grid). Therefore, a variant of the RSMA-slide algorithm of Section 2.3 can be used

here. The cost calculation can differ in this case because two points can merge by

following paths of unequal length. For example, the two predicted points in Fig.

4(b) are merged by line segments of different lengths. After the RSMA is calculated,

17

a corresponding merging tree can be found for the original formulation as shown in

Fig. 4(a).

Predicted Arrivals

trailer

fast

normal

fast

trailer

Predicted Arrivals

sinks still
form a slide

RSMAnormal

merging
tree

Time

Program Positionleader

leader

Time

Figure 4: Clustering with Predicted Arrivals

Alternatively, we can batch streams for a period equal to or greater than the

maximum window for merging. In other words, the users that have newly arrived

can be made to wait for an interval of time for which the previously arrived streams

are being merged. Although this can reduce the problem to the preceding one, in

practice, this can lead to loss of revenue from customer reneging due to excessive

waiting times.

Aggarwal et al. [2] instead use a periodic re-computation approach with an initial

greedy merging strategy. They show that if the arrival rate is fairly constant, a good

re-computation interval can be determined. If a perfect predictor were available

(e.g., via advance reservations), then better performance can be achieved by using

the exact RSMA-slide algorithm.

2.5 Clustering with Interactions and Exits

Here we show how a highly restricted version of the problem with certain unrealistic

assumptions is transformable to the general RSMA problem. We assume a jump-type

interaction model (i.e., a user knows where to fast forward or rewind to, and resumes

18

instantaneously). We also assume that the leading stream does not exit and that

interactions do not occur in singleton streams (which are alone in their clusters).

Furthermore we assume that a perfect prediction oracle exists which predicts the

exact jump interactions. Our “perfect predictor” identifies the time and the program

position of all user interactions and their points of resumption.

Fig. 5 shows a transformation to the RSMA problem in the general case. The

shaded points in the interior of the grid depict predicted interactions. The problem

here is to find a schedule that merges all streams taking into account all the predicted

interactions and consumes minimum bandwidth during the process. This problem

is isomorphic to the RSMA problem, which has recently been shown to be NP-

Complete [23]. Also, the illustration shows that the RSMA is no longer a binary tree

in this case.

Predicted Interactions

trailer

fast

normal

trailer

fast

normal

RSMA

sinks do not
form a slide

Time

Program Position

leader

leader

Time

Figure 5: Clustering Under Perfect Prediction

Stream exits can occur due to the ending of a movie or a user quitting from a

channel which has only one associated user. Exits and interactions by a user, alone

on a stream, result in truncation and deletion of streams respectively, and cause the

RSMA tree to be disconnected and form a forest of trees. The above model is not

powerful enough to capture these scenarios. Perhaps a generalized RSMA forest can

be used to model these situations. However, the RSMA forest problem is expected

to be at least as hard as the RSMA problem.

19

An approximation algorithm for RSMA which performs within twice the optimal

is available using a “plane sweep” technique. But in a practical situation in which a

perfect prediction oracle does not exist, knowing the arrivals, and especially interactions,

beforehand is not feasible. Therefore the practical solution is to periodically capture

snapshots of the system and base clustering on these snapshots. The source of sub-

optimality here is due to the possibility that a stream could keep on following its path

as specified by the algorithm at the previous snapshot even though a stream with

which it was supposed to merge has interacted and does not exist nearby anymore.

Only at the next snapshot does the situation get clarified as the merging schedule

is computed again. Also note that causal event-driven cluster recomputation will

perform worse than the perfect oracle-based solution. For any stochastic solution

to be optimal and computationally tractable, the RSMA must be solvable by a low

order polynomial time algorithm. The important point here is that because we do not

have a low cost predictive solution in interactive situations (the complexity of RSMA

is unknown), we must recompute the merging schedules periodically to remain close

to the optimal.

Note that an algorithm with time complexity O(n3) (for RSMA-slide) may be

expensive for an on-line algorithm and it is worthwhile comparing it with its approximation

algorithm which runs faster, producing worst-case results with cost within twice the

optimal. In the simulations section (Section 4), we compare both the algorithms

under dynamic situations. Rao et al. [21] give a polynomial-time approximation

algorithm based on a plane-sweep technique which computes an RSMA with cost

within twice the optimal. The algorithm is outlined below.

If the problem is set in the first quadrant of E2 and the root of the RSA is at

the origin, then for points p and q belonging to the set of points on the rectilinear

grid of horizontal and vertical lines passing through all the sinks, the parent node

of points p and q is defined as parent(p, q) = (min(p.x, q.x), min(p.y, q.y)), and the

rectilinear norm of a point p = (x, y) is defined by ‖(x, y)‖ = x + y.

20

Algorithm RSMA-heuristic(S:sorted stream list)
{

Place the points in S on the RSA grid
while (S 6= φ)
Find 2 nodes p, q ∈ S such that ‖parent(p, q)‖ is maximum
S ← S − {p, q} ∪ parent(p, q)
Append the branches parent(p, q) → p and parent(p, q) → q to the RSA tree.

end

}

The algorithms yields an heuristic tree upon termination. Because it is possible

to store the points in a heap data structure, we can find the parent of p and q with the

maximum norm in O(log n) time and hence the total time complexity is O(n log n).

The fact that the static framework breaks down in the dynamic scenario is not

surprising. Wegner [27] suggests that interaction is more powerful than algorithms

and such scenarios may be difficult to model using an algorithmic framework.

2.6 Clustering with Harder Constraints and Heuristics

In practice, stream clustering in VoD would entail additional constraints. We list a

few of them here:

• Limits on total duration of rate adaptation per customer

• Critical program sections during which rate adaptation is prohibited

• Limited frequency of rate changes per customer

• Continuous rather than “jump” interactions

• Multiple classes of customers with varying pricing policies

The inherent complexity of computing the optimal clustering under dynamicity,

made even harder by these additional constraints, warrants search for efficient heuristic

21

and approximation approaches. We propose a number of heuristic approaches which

are worthy of experimental evaluation. We evaluate these approaches experimentally

in Section 4.6.

• Periodic Periodically take a snapshot of the system and compute the clustering.

The period is a fixed system parameter determined by experimentation. Different

heuristics can be used for the clustering computation:

– Recompute RSMA-slide (optimal binary tree) usingO(n3) dynamic programming

algorithm.

– Use the O(n log n) RSMA heuristic algorithm.

– Use theO(n) EMCL algorithm to release the maximum number of channels

possible.

– Follow EMCL algorithm by RSMA-slide, heuristic RSMA-slide or all merge

with leader.

• Event-triggered Take a snapshot of the system whenever the number of new

events (arrivals or interactions) exceeds a given threshold. In the extreme case,

recomputation can be performed at the occurrence of every event.

• Predictive Predict arrivals and interactions based on observed behavior. Compute

the RSMA based on predictions.

2.7 Dependence of Merging Gains on Recomputation Interval

In this section, we use analytical techniques to investigate the channel usage due to

RSMA in the steady state. The modeling approach is more completely described in

reference [15].

First, we can approximate expression for the number of streams needed to support

users watching the same movie in a periodic snapshot-RSMA based aggregation

22

system as a function of time. We consider the non-interactive case here. In a

typical recomputation interval R, new streams arrive (one user per stream) at a

rate λa; the older streams are captured in the previous snapshot captured at the

beginning of the current recomputation interval are merged using RSMA. Now, to

make the calculation tractable, we assume that the process of capturing snapshots

enforces a “natural clustering” of streams in the sense that the streams being merged

in the current recomputation interval are less likely to merge with streams in the

previous recomputation interval, at least for large values of R. This assumption is

reasonable because last stream of the current cluster (the trailer) accelerates while

the leading stream of the previous cluster (leader) progresses normally, thus resulting

in a widening gap between end-points of clusters.

We model one recomputation interval R, and then consider the effect of a sequence

of R’s by a summation. Again, we make a very simplistic assumption to make the

problem tractable. We assume that the streams in a snapshot are equally spaced

and the separation is 1
λa

. In this situation, the RSMA is equivalent to progressively

merging streams in a pairwise fashion. If L is the length of the movie and K = 15

is a factor arising due to the speed-up, the number of streams as a function of time

from the beginning of the snapshot is given by:

C(t) =


0 : t < 0

λat : 0 ≤ t < R
λaR

2blog(
λa(t−R)

K
+1)c
≈ KR

t−R+ K
λa

: R ≤ t < R + L

0 : t ≥ R + L

(9)

At any time instant t, the total number of streams N(t) is built from contributions

of a sequence of recomputation intervals. It is given by:

N(t) =
∞∑

n=0

C(t− nR) (10)

Note that only some of the terms in the above summation have a non-zero

23

contribution to the total sum. We are interested in calculating the average number

of streams in steady state, in other words, in the value of limT→∞
1
T

∫ t0+T

t0
N(t)dt.

But, it can be shown that N(t) is periodic with period R, hence we calculate the

value of 1
R

∫ t0+R

t0
N(t)dt, where t0 signifies a time instant after steady state has been

reached.

As we indicated before, N(t) is non-zero only for a sequence of recomputation

intervals; hence by appropriately taking contributions from relevant intervals, we get

an expression for the average number of streams in the system in steady state:

Ñ(R) =
1

R

∫ t0+R

t0

N(t)dt ≈ 1

2
λaR + K ln(

λaL + λaR + K

K
) (11)

We observe that Ñ has a linear component in R and a logarithmic (sub-linear)

component in R, thus making the overall effect linear in R, especially for large value of

R. We shall see in Section 4.6 that this agrees in behavior with the simulation results,

although there are inaccuracies in the exact values of N(t) due to the approximate

nature of the model developed here.

3 Stochastic Dynamic Programming Approach

In this section, we attempt to model the interactive VoD system using stochastic

dynamic programming (DP). We model the arrival, departure and interactions in the

systems as events, and as in a standard DP based approach, we apply an optimization

“control” at the occurrence of each event. Let us consider the system at time t0 = 0.

Suppose there are N users u1, u2, . . . , uN in the system (for simplicity of analysis

we assume all users receive the same program) at that particular time instant, and

their program positions are given by a sorted position vector P = (p1, p2, . . . , pN),

respectively, where p1 ≥ p2 ≥ . . . ≥ pN . Because this is an aggregation based system,

the number of streams in the system, n, is less than the number of users. Because the

24

user position vector P is sorted, the stream position vector can be easily constructed

from P in linear time. Therefore, the state of the system can be denoted in two ways:

(1) by the user position vector P as described in the previous paragraph, or, (2) by

a stream position vector S = (s1, s2, . . . , sn) with ID’s of users that each stream is

carrying. We choose the latter representation for our analysis in this section.

In the following analysis, we assume that the N th user arrived at time, t0. Hence,

pN = 0, sn = 0, and we must apply an optimization control at this time instant.

An optimization control is nothing but a merging schedule which results in the

minimization of the total number of streams in the long run under steady state.

A merging schedule is a binary sequence M = (r0, r1, . . . , rn) of length n, where ri

denotes the content progression rate of stream si, and ri ∈ {r, r + ∆r},∀i.

We describe a model for the events in the system. Suppose, the next event occurs

at time instant t0 + τ . The streams in the system progress according to the merging

schedule M , which was prescribed at time t0. The new position vector S ′ will be a

function of the old position vector S, the merging schedule M , the inter-event time

τ , and also the type of event. The size of the position vector S, increases, decreases

or stays the same depending on the type of the event:

• Arrival: size increases by 1

• Departure due to a user initiated quit: size decreases by 1 (if the quit is

initiated in a single-user stream) or stays the same (if the quit is initiated in a

multi-user stream)

• Exit due to the end of the program: size reduces by 1, and number of

users on the exiting stream.

• Interaction: size increases by 1 (if initiated in a multi-user stream) or stays

the same (if initiated in a single-user stream)

25

3.1 Cost Formulation for Stochastic Dynamic Programming

We begin with a brief introduction to the stochastic DP approach [5] that we decided

to utilize to model the system. The quantity that we want to minimize in the system

is the number of streams, n in steady state. Using the DP terminology, we refer to

this quantity as average cost incurred per unit time. The total average cost incurred

can be represented by a sum of short-term cost and long-term cost per unit time.

The former reflects the immediate gains achieved by the merging schedule M (i.e.,

before the next event occurs), whereas the latter reflects the long term gains due to

M . If the current state (basically the position vector S at time t0) is represented by i

and the long-run cost incurred at state i is denoted by a function h(i), then the total

average cost per unit time at the current time instant t0 is given by the Bellman’s

DP equation:

J∗ + h(i) = min
u∈U(i)

[
E[g(i, u)] +

t∑
j=1

pij(u)h(j)

]
, (12)

where, U(i) is the set of possible controls (merging schedules, in our setting) that can

be applied in state i, g(i, u) is the short-term cost incurred due to the application of

control u in state i, E[g] denotes the expected value of the short-term cost, pij(u)

denotes the transition probabilities from state i to state j under control u and h(j)

is the long-run average cost at state j. t is a state that can be reached from all

initial states and under all policies with a positive probability, and J∗ is the optimal

average cost per unit time starting from state t.

The Curse of Dimensionality Under this formulation, we quickly run into some

problems. First, the state space is very large. If the maximum number of users in the

system is N and the program contains L distinct program positions the number of

states is clearly exponential in N , no matter how coarsely the program position are

represented (obviously, this depends on the coarseness of representation). For fine

grain state representations, the size of the state space grows exponentially as well.

Also, the space of controls is exponential in n, where n denotes the number of streams

26

in the system, because each stream has two choices for the content progression rate.

Furthermore, the long-run cost function h(·) is very hard to characterize for all states

especially in the absence of a formula based technique. Currently we believe that

h(·) can be characterized by running a simulation for long enough that states start to

recur and then the long run average cost values can be updated for every state over

a period of time. However, this technique is extremely cumbersome and impractical

owing to the hugeness of the state space in a VoD system with a large dimension

(N). Therefore, due to this curse of dimensionality, we believe that the DP method

is impractical in its actual form and attempted to use it in a partial manner, which

we explain in detail next.

state i state j

E[g(i,u)]

event e event e+1

time t0

Time

τ

Time

t1
t2

t3

t0 sn s1

Program Position
L

state i: (s1, s2, ..., sn)

event e

event e+1

τ

t(n−1)

(arrival)

state j: (s1’, s2’, ..., sm’)

Figure 6: Event Model and Controls

Expected Cost Calculation Figure 6 demonstrates the basic model of events

and controls. The left side depicts the occurrence of events e and e + 1 for a section

of the time-line. The inter-event time is τ and the system moves from state i to state

j under control u and incurs a short-term expected cost denoted by E[g(i, u)] which

depends on the distribution of the random variable τ . We illustrate a technique for

the calculation of this quantity below.

The control space is chosen carefully to prevent an exponential search and to yield

an optimal substructure within a control. u is considered to be a feasible control if

it represents a binary tree with s1, s2, · · · , sn as leaves. Hence u is a function of

27

the state i. Although the control space U(i) grows combinatorially with n, the use

of the principle of optimality (as demonstrated later) results in a polynomial time

algorithm for choosing the optimal control. On the right side of Figure 6, a control

is shown as a binary tree which is a function of state i. We depict the intermediate

merge points in the binary tree by tk : 1 ≤ k ≤ n − 1; t1 ≤ t2 · · · ≤ tn−1. tn = L−s1

r+∆

denotes the time that the leading stream will run. Here we assume that the leading

stream goes fast after the final merge and that all n streams merge before the movie

ends (i.e., tn−1 < L−s1

r+∆
). tk’s can be determined easily from the stream position

vector (essentially state i) and the control under consideration, u.

We formulate the short-term cost function for a given state i and a control u as

the cost per unit time between events e and e + 1. For simplicity, we assume that

t0 = 0; because this contributes to an additive term in the expected cost formulation

and it does not affect the comparison of costs under two different controls.

g(i, u) =



n : 0 = t0 < τ < t1
1
τ
(nt1 + (n− 1)(τ − t1)) : t1 ≤ τ < t2

... :
...

1
τ
(nt1 + (n− 1)(t2 − t1) + · · ·+ (n− k)(τ − tk)) : tk ≤ τ < tk+1

... :
...

1
τ
(nt1 + (n− 1)(t2 − t1) + · · ·+ 2(tn−1 − tn−2) + (τ − tn−1)) : tn−1 ≤ τ < tn = L−s1

r+∆

(13)

The general (kth) branch in the above cost formulation simplifies to the following:

gk(i, u) =
1

τ
(nt1 + (n− 1)(t2 − t1) + · · ·+ (n− k)(τ − tk))

=
1

τ

k∑
l=0

tl + (n− k), tk ≤ τ < tk+1 (14)

The only random variable in the above analysis is the inter-event time τ which is

exponentially distributed because the occurrence of various events can be modeled

by the Poisson distribution. In particular, if the arrivals occur with a mean rate

λa, quits occur with a mean rate λq, and interactions occur with a mean rate λi,

28

and each is modeled by the Poisson distribution, then the aggregate event process is

also Poisson with a rate λ = λa + λq + λi (i.e., the mean inter-event times (τ) are

exponentially distributed with mean λ). The expected cost under control u can be

calculated in the following manner.

E[g(i, u)] =

∫ ∞

0

g(i, u)f(τ)dτ =

∫ ∞

0

λe−λτg(i, u)dτ =

∫ tn

t0

λe−λτg(i, u)dτ

=
n−1∑
k=0

[∫ tk+1

tk

λe−λτgk(i, u)dτ
]

=
n−1∑
k=0

E[gk(i, u)], (15)

where E[gk(i, u)] is given by

E[gk(i, u)] =

∫ tk+1

tk

λe−λτ
[1

τ

k∑
l=0

tl + (n− k)
]
dτ = (n− k)

∫ tk+1

tk

λe−λτdτ + (
k∑

l=0

tl)

∫ tk+1

tk

1

τ
λe−λτdτ

= (n− k)[e−λtk − e−λtk+1] + λ(
k∑

l=0

tl)[Ei(λtk)− Ei(λtk+1)], (16)

where Ei(t) =
∫∞

t
e−x

x
dx. From Equation 15, after algebraic simplification, we yield

a compact expression for the expected cost:

E[g(i, u)] = n−
n∑

k=1

e−λtk + λ
n∑

k=1

tkEi(λtk) (17)

Stochastic RSMA Having derived an expression for the expected short-term cost,

we attempted to use it for choosing the optimal control. In other words, given that we

are in state i, we find the control u(i) which minimizes E[g(i, u(i))]. Instead of direct

constrained minimization, we use the principle of optimality and the separability of

terms in Equation 17 to represent the cost recursively as follows.

29

E[g(i, u)] = 1, n = 1

= E[g(iL, uL)] + E[g(iR, uR)]− (e−λtn−1 − e−λtn) + λ(tn−1Ei(λtn−1)− tnEi(λtn)), n > 1,(18)

where uL and uR represent the left and the right subtrees of u, respectively, and

iL and iR represent the corresponding portions of the state i. Because tn−1 is fixed

for a given state i, a static DP approach that is very similar to the RSMA-slide

approach described in Section 2 can be applied to produce the optimal u. The time

complexity of this algorithm, called Stochastic RSMA, is O(n3). Simulation results

for the algoithm are shown in Section 4.6.

4 Simulations

In this section, we show simulations of the clustering algorithms for rate adaptive

merging described earlier, and compare them with some heuristic algorithms which

will be described later in this section.

4.1 Objective

Some of the algorithms described in Section 2 are optimal in the static case (i.e., in

the absence of user interactions). In addition, no optimal algorithms are known for

the dynamic scenario in which users arrive into the VoD system, interact, and depart.

However, the behavior of such a system with the application of the aforementioned

clustering and merging techniques can be studied by simulations. In these simulations,

we investigate the gains offered by an ensemble of techniques under varying conditions.

We attempt to answer the following questions:

• Which policy is best in the non-interactive scenario?

30

• Which policy is best under dynamic conditions in the long-run?

• What is effect of high arrival and interaction rates on these algorithms?

• What algorithm should be used when facing server overload?

4.2 The Simulation Setup

We treat the simulation as a discrete-time control problem. As outlined in Section

2, there are various ways in which we can control the system including: apply

control with a fixed frequency, apply control with a fixed event frequency, or adapt

control frequency depending on the event frequency. The latter being the hardest

to implement. In this work, we have considered only the first method of periodic

application of control.

The simulation setup consists of two logical modules: a discrete event simulation

driver and a clustering unit. The simulation driver maintains the state of all streams

and generates events for user arrivals, departures and VCR actions (fast-forward,

rewind, pause and quit) with inter-event times obeying an exponential probability

distribution. Here we have not considered a bursty model of interactions. A merging

window (also called the re-computation period) is an interval of time within which a

clustering algorithm attempts to release channels. Once every re-computation period,

the simulation driver conveys the status of each stream to the clustering unit and

then queries it after every simulation tick to obtain each stream’s status according

to the specified clustering algorithm. It then advances each stream accordingly.

For instance, if the clustering unit reports the status of a particular stream to be

accelerating at a given instant of time, the simulation driver advances that stream

at a slightly faster rate of 16
15

times that of a normal-speed stream.

The clustering unit obtains the status of all running streams from the simulation

driver and computes and stores the complete merging tree for every cluster in its

internal data structures until it is asked to recompute the clusters. On this basis,

31

Table 1: Simulation Parameters

Parameter Meaning Value

M Number of movies3 100
L Length of a movie 30 min
W Re-computation window 10− 1000 sec
λarr Mean arrival rate4 0.1, 0.3, 0.7, 1.0 sec−1

λint Mean interaction rate4,5 0, 0.01, 0.1 sec−1

λdur Mean interaction time4 5 sec

it supports querying on the status of any running non-interacting stream by the

simulation driver after every simulation time unit.

4.3 Assumptions and Variables

The main parameters in our simulations are listed in Table 1. We simulated three

types of interactions: fast forward, rewind and pause. λint is an individual parameter

that denotes the rate of occurrence of each of the above interaction types (e.g., if

λint = 0.02 sec−1, it means a fast-forward, or a rewind etc. occurs in the system

once every 50 seconds). For simplicity we maintain λint the same for each type of

interaction.

λarr and λint determine the number of users in the system at any given time. The

user pool is assumed to be large. Also, we do not consider the probability of blocking

of a requesting user here as we assume that the capacity of the system is greater

than the number of occupied channels.

The content progression rate of a normal speed stream is set at 30 fps and that

of an accelerated stream is 32 fps. The accelerated rate can be achieved in practice

3Movie popularities obey Zipf’s law
4Exponential distribution assumed
5for each type of interaction

32

by dropping a B- picture from every MPEG group of pictures while maintaining a

constant frame playout rate. Fast-forward and fast-rewind are fixed at 5X normal

speed. Finally, the simulation granularity is 1 sec and the simulation duration is

8, 000 seconds.

We investigated the channel and bandwidth reclamation rates for each clustering

algorithm and compared the results (Section 4.5).

4.4 Clustering Algorithms and Heuristics

We simulated six different aggregation policies and compared them:

EMCL-RSMA Clusters are formed by the EMCL algorithm and then merging is

performed in each cluster by the RSMA-slide algorithm (Section 2).

EMCL-AFL Clusters are formed by the EMCL algorithm and then merging is

performed by forcing all trailers in a cluster to chase their cluster leader.

EMCL-RSMA-heuristic Clusters are formed by the EMCL algorithm and then

merging is performed by a RSMA-heuristic which is computationally less expensive

than the RSMA-slide algorithm.

RSMA The RSMA-slide algorithm is periodically applied to the entire set of streams

over the full length of the movie, but without performing EMCL for clustering.

RSMA-heuristic The RSMA-heuristic algorithm is periodically applied to the

entire set of streams over the full length of the movie, but without performing

EMCL for clustering.

Greedy-Merge-heuristic Merging is done in pairs starting from the top (leading

stream) in the sorted list. If a trailer cannot catch up to its immediate leader

within the specified window, the next stream is considered. At every merge,

interaction, or arrival event, a check is performed to determine if the immediate

33

leader is a normal speed stream. If so, and merging is possible within a specified

window, the trailing stream is accelerated towards the immediate leader. This

process is continued throughout the window. GM is similar to Golubchik’s

heuristic [11] apart from the fact that it re-evaluates the situation at every

interaction event as well.

The first three policies release the same number of channels at the end of an

interval because they use the EMCL algorithm for creating mergeable clusters. But,

the amount of bandwidth saved in the merging process is different in each case.

EMCL-RSMA proves to be optimal over a given merging window, so it conserves the

maximum bandwidth. EMCL-AFL is a heuristic and can perform poorly in many

situations. EMCL-RSMA-heuristic, in contrast, uses an approximation algorithm for

the RSMA-slide that guarantees a solution within twice the optimal [21]. Although

our problem falls within the slide category and has an O(n3) exact solution, we

experiment with the approximation algorithm that runs in O(n log n) time.

4.5 Results and Analysis

Here we discuss clustering gains (channel reclamation) and merging gains (bandwidth

reclamation) due to the aforementioned algorithms. We classify the simulations into

two categories:

4.5.1 Static Snapshot Case

The static snapshot case is applicable in overload situations. That is, when the

server detects an overload, it wants to release as many channels as possible in a

static merging window (one in which there are no user interactions). We vary the

window size for a fixed number of users. Fig. 7(a) shows that the clustering gain

increases as W increases. Also visible is that EMCL outperforms GreedyMerge over

any static window of size W . In Fig. 7(b), compares the bandwidth gains due to the

34

Table 2: Arrival and Interaction Patterns

Arrivals / Interactions NO LOW HIGH
LOW λarr = 0.1, λint = 0 λarr = 0.1, λint = 0.01 λarr = 0.1, λint = 0.1

LOW-MEDIUM λarr = 0.3, λint = 0 λarr = 0.3, λint = 0.01 λarr = 0.3, λint = 0.1
HIGH-MEDIUM λarr = 0.7, λint = 0 λarr = 0.7, λint = 0.01 λarr = 0.7, λint = 0.1

HIGH λarr = 1.0, λint = 0 λarr = 1.0λint = 0.01 λarr = 1.0, λint = 0.1

three merging algorithms. The merging gain increases with increase in W . Also, over

any static window in the graph, the gains due to EMCL-RSMA and EMCL-RSMA-

heur are almost identical! Although EMCL-RSMA is provenly optimal over a static

window, the RSMA heuristic does as well in most cases (the reason for this may be

attributed to the parameters of the particular inter-arrival distribution). Although

cases can be constructed in which the heuristic produces a result that is twice the

optimal value, in most practical situations it performs as well as the exact algorithm

at a lower computational cost.

Fig. 7(c) shows the number of users varied for a fixed window size of 100 s

comparing GM and EMCL. Clearly, EMCL performs better than GM and their

clustering gains remain almost constant throughout the curves although the gap

between the two appears to increase as U increases. Fig. 7(d) shows that EMCL-

RSMA and its heuristic version perform equally well and clearly reclaim more bandwidth

than EMCL-AFL. Even in this case, the percentage gains appear to remain constant

as U increases.

4.5.2 Dynamic Case

The dynamic case is the general scenario in which users come into the system,

interact, and then leave. Here, we simulate over a time equivalent of approximately

41
2

lengths of the movies.

35

We study the behavior of cumulative channel reclamation gains due to the above

algorithms as a function of time for cases with varying rates of user arrival and

interactions. We considered 12 different arrival-interaction patterns as shown in

Table 2.

For each of the above cases and for each of the six different aggregation policies,

we ran the simulations for eight different re-computation window sizes(W): 10, 25,

50, 100, 200, 500, 750 and 1,000 seconds. Fig. 8 shows the steady-state behavior of

the system for λarr = 0.7 and λint = 0.1. We can clearly see that RSMA outperforms

all other policies by a large margin for small and medium values of W . For W =

100 sec, RSMA reclaims about 400 channels from 1, 250 channels after the steady

state is reached thus yielding gains of about 33%. This essentially means that for

the particular type of traffic (λarr = 0.7 and λint = 0.1), we do not need more than

850 channels to serve 1, 250 streams.

For smaller W , other policies provide diminished channel gains. But as the re-

computation interval is increased, RSMA begins to suffer and EMCL based policies

and GM begin to perform well. This is because RSMA takes a snapshot of the whole

system at the beginning of a recomputation interval and advances streams according

to the RSMA tree computed from that snapshot. In the situation in which the user

arrival rate is moderately high and the interaction rate is high as well, for high values

of W , a many streams come in and interact between two consecutive snapshots and

thus the gains due to RSMA drop. In contrast, GM tries to reevaluate the situation

at every arrival and interaction event, so it performs very well.

Our speculation and conclusion is that different policies will perform at their best

for different values of W and indeed, we found this to be true. Fig. 9 shows how the

channel gains vary with the value of the recomputation window. For consistency, we

consider the case with λarr = 0.7 and λint = 0.1. The graphs for the other cases are

similar in shape and have not been shown due to space limitations. In the steady

state, the system has 1, 250 users on average. For small values of W (≤ 500 secs),

EMCL-based schemes and GM do not perform well, whereas, RSMA and RSMA-heur

36

perform well. However, for larger values of W (> 500 secs), EMCL-based schemes

and GM perform well and RSMA-heur is highly sub-optimal. Although RSMA shows

reduced gains for higher values of W , it is still superior to EMCL-based algorithms.

GM outperforms all algorithms, including RSMA for W ≥ 750 due to the reason

mentioned in the previous paragraph. But GM is more CPU intensive as it reacts to

every arrival, interaction, and merge event. In that sense, it is not a true snapshot

algorithm like the others, and is not a scalable solution under heavy rates of arrival

and interaction although it may perform better than the other algorithms in such

situations.

Each policy attains its best results for different values of W . RSMA performs

best for W = 10 sec; GM performs best for W = 1, 000 secs and the EMCL based

algorithms perform best for 500 ≤ W ≤ 750. Fig. 10 plots the best channel gain

achieved by a policy for every class of traffic (see 2). In the figure, there are four sets

of curves with three curves each. Each set corresponds to an arrival rate because λarr

is the most dominant factor affecting the number of users in the system. The mean

numbers of users in the system for λarr = 0.1, 0.3, 0.7 and 1.0 are 180, 540, 1, 250 and

1, 800 respectively. The mean clustering gains increase significantly with increase in

the arrival rate.

For each of the four sets, the channel gains are almost identical for λint = 0 and

λint = 0.01 but are less for λint = 0.1. That is not far from expectations as a high

degree of interaction causes each algorithm to perform worse. More importantly,

the RSMA algorithm emerges as the best overall policy. As λarr increases, the gap

between RSMA and the other algorithms widens.

Also, there little difference in the gains due to EMCL-RSMA and its heuristic

counterpart, although there is a vast difference between the gains due to RSMA and

those due to the RSMA heuristic. This is because EMCL breaks a set of streams

into smaller groups and the EMCL-RSMA heuristic performs almost identically

well as EMCL-RSMA for smaller groups. But, in case of RSMA, the number

of streams is large (EMCL has not been applied to the stream cluster), so the

37

sub-optimality of the heuristic appears. Note that the RSMA-slide algorithm of

complexity O(n3) is affordable in practical situations because it is invoked only

once in every recomputation period. As a reference point, the running time of the

algorithm on an Intel Pentium Pro 200 MHz PC running the Linux operating system

is well below the time required to playout a video frame; therefore no frame jitter is

expected on modern playback hardware.

¿From the above simulations, we conclude the following:

• EMCL-RSMA is the optimal policy in the static snapshot case as it reclaims the

maximum number of channels with minimum bandwidth usage during merging.

Thus it is the ideal policy for handling server overloads.

• In an i-VoD system showing 100 movies, for dynamic scenarios with moderate

rates of arrival and interaction, periodically invoking RSMA with low re-computation

periods yields the best results.

• In realistic VoD settings, the arrival rate plays a greater role than the interaction

rate (except for interactive game settings where aggregation is not a feasible

idea). High arrival rates result in more streams in the system thus creating

better scope for aggregation.

• Higher degrees of interaction result in lesser clustering gains for every algorithm.

• With increasing rates of arrival, RSMA’s edge over other algorithms increases.

• The EMCL-RSMA heuristic performs almost as well as EMCL-RSMA although

the RSMA-heuristic performs very badly as compared to RSMA.

4.6 Comparisons Between RSMA Variants

Here we compare the performance of the various forms of the RSMA-slide algorithm,

namely, periodic snapshot RSMA (Slide), event-triggered RSMA (Section 2.6),

38

stochastic RSMA (Section 3), and predictive RSMA (Section 2.6). We consider

a single movie of length L = 2 hours.

First, we evaluate the performance of Slide in the “arrival-only” situation because

it lends itself to easy comparison with the analytical framework described in Section

2.7. The behavior of the channel gains is depicted in Fig. 11(a) as a function of

the recomputation interval R. The simulation results show that as R is increased,

the channel gain degrades as a linear function of R. The analytically estimated

channel gains as described in Section 2.7 are plotted on the same graph. From the

graph we see that the analytical estimation comes reasonably close to the simulation

results. Although the analytical technique underestimates the simulation results by

approximately 10 streams, the slopes of the two curves are almost the same. The

slope is very close to the analytical estimate of 1
2
λa (Equation 11). The underestimation

can be attributed primarily to the assumption that the recomputation results in

formation of natural clusters, and the streams in two different clusters do not merge.

This assumption may not be valid due to a possible effect of streams in one recomputation

interval on those in the next or previous one.

Next, we consider the threshold based, event-triggered RSMA, in which recomputation

is not done periodically but only when the number of events exceeds a threshold. Fig.

11(b) shows the variation of the gains with the increase in the event count threshold.

The case in which the threshold is 0 corresponds to the pure event-triggered RSMA

where recomputation happens at the occurrence of each event. As expected, the

gains decrease as the threshold is increased.

In summary, Table 3 shows the number of users and streams for each variant

of RSMA in steady state. The Slide refers to the RSMA-slide with R = 10 sec.

The rationale for using this value is that the arrival rate considered is 0.1 /sec, and

hence on average there will be an arrival every 10 seconds. By “perfect prediction,”

we intend the following: to evaluate whether gains are achieved with this technique

that warrant obtaining the difficult prediction of future events. Note that the RSMA

can be computed optimally under perfect prediction if the events comprise arrivals

39

only, as shown in Section 2.4. When the actual stream arrives later, it just follows

the path computed by the predictive RSMA algorithm. Stochastic RSMA reacts to

every arrival event and the RSMA tree is determined using the technique described

in Section 3. The event-triggered RSMA algorithm corresponds to the case in which

the event count threshold is 0.

Table 3: Comparison between Variants of RSMA (λarr = 0.1, λint = 0, λq = 0)

RSMA Variant Avg. #Users Avg. #Streams Avg. #Users per Stream

RSMA Slide (R = 10 sec) 722 71 10.17
Event Triggered RSMA 722 71 10.17

Predictive RSMA 721 71 10.15
Stochastic RSMA 732 137 5.34

GreedyMerge 720 373 1.93

We see from Table 3 that with the exception of the stochastic RSMA, the other

variants perform almost identically under the current set of conditions. Because

the merging algorithm alters the effective service time of a user by manipulation of

the content progression rates, it affects the number of users in the system directly.

The random number generator in the simulator produced user arrivals with mean

λeffective = 0.1033/sec which is slightly higher than the intended mean of λarr =

0.1/sec. Hence the average number of users in steady state in a non-aggregated

system should be λeffective × L = 0.1033 × 7200 = 744, but due to aggregation,

the effective service time for many streams is reduced when they progress in an

accelerated fashion, hence the number of users in the system is reduced. Stochastic

RSMA performs worse than the other RSMA variants because only the short-term

cost is considered in the formulation. For comparison, we show the gains due to the

deterministic “greedy” algorithm. It performs much worse than its stochastic greedy

counterpart (i.e., stochastic RSMA) as well as the the other RSMA variants.

Among all RSMA variants, the Slide is the simplest to implement and is computationally

less expensive than its event-triggered counterpart because it does not react to every

40

event. Predictive RSMA, in contrast, does not provide additional gains even with

perfect prediction, hence the computational overhead involved in prediction is not

justified. We conclude that the Slide algorithm yields the best results with the least

computational overhead than its variants.

Fig. 12 shows the effect of varying degrees of interactivity on the RSMA slide

algorithm as a function of R in steady state. We considered three different values of

interaction rates: 0, 0.01 and 0.02 per second for each type of interaction respectively.

The quit rate is held at a low constant value (0.001 per second) in order to prevent the

number of users in the system from substantially varying. The linearity dependence

on R is lost as the interaction rate increases – for λint = 0, the curve is practically

linear, whereas for λint = 0.02, the curve is not linear. This can be attributed to

random interactions such as fast-forward and rewind result in greater fluctuations in

stream positions at snapshots, thus making the merging trees of adjacent snapshots

less correlated. Non-linearities arise in all three curves for lower values of R because

there is no natural clustering due to taking snapshots with low R, and hence the

streams in adjacent temporal clusters can merge later. Our analytical estimation

framework does not take such behavior into account. As R increases, the gap

between the interactive case and the non-interactive case widens significantly. This

phenomenon is not unexpected as a larger R means more interaction events in that

interval, which in turn translates to the increase in the loss of gains that were achieved

due to merging. Hence, as observed before, high degrees of interactivity can be

handled by recomputing the RSMA frequently.

Table 4: Comparison between Variants of RSMA (λarr = 0.1, λint = 0.01, λq = 0.001)

RSMA Variant Avg. #Users per Stream

RSMA Slide (R = 6 sec) 8.33
RSMA Slide (R = 16 sec) 8.23
Event Triggered RSMA 8.62

Stochastic RSMA 4.23

41

Table 4 shows the performance comparison of the different RSMA variants in

the dynamic, interactive cases. In comparison with Table 3, the average number

of users per stream is lower due to user interactions. The aggregate event rate is

λarr + λint + λq = 0.161, and hence the mean inter-event time is 1
0.161

≈ 6 sec.

Hence we use R = 6 in the RSMA-slide algorithm. The event-triggered RSMA

performs slightly better than its slide counterpart, but not by a substantial margin.

Expectedly, RSMA-slide with a slightly higher R(16 sec) yields slightly worse results

than RSMA-slide with R = 6. However, Stochastic RSMA performs much worse

as compared to the other variants because it does not take the long-term cost into

account. The event triggered version of RSMA starts performing better than the

periodic version as interactivity increases, but it has higher computational overhead.

Therefore, a system designer should evaluate the system parameters and evaluate

the trade-offs between the desired level of performance and computational overhead,

and choose a clustering algorithm accordingly.

5 Conclusion and Future Work

Server based aggregation schemes are important for scalable delivery of interactive

VoD content to heterogeneous end-clients with varying memory and storage capacities.

In this chapter, we described the modeling of service aggregation by server-side stream

clustering in i-VoD systems. We investigated various optimality criteria arising in

stream clustering in video-on-demand, and then identified an optimal algorithm

(RSMA-slide) with time complexityO(n3) for the “static stream clustering” problem.

We also modeled a restricted version of the dynamic clustering problem (with user

arrivals and interactions) by a general RSMA which has been recently proven to be

NP-complete. Because the general RSMA formulation in the interactive case requires

unreasonable assumptions and does not yield a polynomial time solution, we have

modeled the dynamic problem using iterative invocation of the optimal algorithms

applicable in the static case.

42

We demonstrated full-scale simulations of the dynamic scenario with users entering,

interacting, and leaving the system. In the simulations, we performed six different

aggregation policies and compared their clustering gains in the steady-state. We

investigated each policy for several re-computation intervals (W), arrival and interaction

rates (λarr and λint respectively), and observed that a particular policy performs at its

best at different values of W , λarr and λint. Although EMCL RSMA and its heuristic

counterpart perform equally well in most situations, RSMA-slide outperforms its

heuristic counterpart by a large margin because of the larger number of streams in

a snapshot.

We also attempted to use stochastic dynamic programming to model the dynamic,

interactive scenario, but ran into difficulties due to computational complexity. Although

we were able to craft a closed-form representation of the short-term cost due to

merging between two successive events, we were unable to characterize the long-

term cost in this study. Unfortunately, optimization with short-term cost as the

objective does not yield satisfactory results. However, we remain hopeful that further

investigation in this direction can result in the discovery of a good long-term cost

formulation.

We observed that periodic invocation of the RSMA-slide clustering algorithm

with a small recomputation interval produces best results under moderately high

rates of arrival and interactions. Its O(n3) time-complexity is also justified because

it is invoked only once in a recomputation period that is of the order of tens of

seconds to a few minutes, and also because it yields much better gains than does its

heuristic version. We analytically approximated channel usage due to RSMA-slide in

non-interactive situations as a function of R, and then showed by simulation that its

performance degrades linearly with increase in R; the analysis and simulation results

were in reasonable agreement with each other.

Under high rates of arrival and interaction, we showed that RSMA with large

re-computation periods yields highly suboptimal results, and heuristics that react to

every event have superior performance. A greedy heuristic like GM may result in a

43

much larger number of undesirable rate changes in the system. We also evaluated the

performance of other variants of the RSMA-slide algorithm and found that the event-

triggered RSMA and RSMA-Slide with R = 1
λa

perform almost equally well. The

event triggered version performs well at the cost of a higher computational overhead.

Hence we choose RSMA-slide with low to medium re-computation intervals to be the

best overall clustering policy in moderately interactive situations. R can be tuned by

the system designer to balance the trade-off between optimality and computational

overhead.

There are a variety of unsolved problems related to the work described herein.

Future work will consider the feasibility and complexity of distributed clustering

schemes and the clustering of streams served from geographically displaced servers. If

logical channels are not independent and share a common medium like IP multicast,

new stream creation can impact existing streams. Specifically we have assumed

QoS in-elasticity; interaction of these algorithms in the presence of heterogeneous

and layered streams is interesting. Another important issue that remains to be

resolved before clustering schemes can be deployed in practice is seamless splicing of

video frames compounded by network delays and delays introduced by inter-frame

coding as in MPEG. Moreover, blocking of users due to depletion of channels is not

considered here; however, blocking and service denial is inevitable in a system with

finite resources and its probability has to be minimized.

References

[1] K.C. Almeroth and M.H. Ammar, “On the Use of Multicast Delivery to Provide

a Scalable and Interactive Video-on-Demand Service,” IEEE JSAC, Vol. 14, No.

6, pp. 1110-1122, Aug. 1996.

[2] C.C. Aggarwal, J.L. Wolf and P.S. Yu, “On Optimal Piggyback Merging Policies

for Video-on-Demand Systems,” Proc. ACM SIGMETRICS ’96, Philadelphia,

PA, USA, pp. 200-209, May 1996.

44

[3] P. Basu, R. Krishnan, T.D.C. Little, “Optimal Stream Clustering Problems in

Video-on-Demand,” Proc. PDCS ’98 - Special Session on Distributed Multimedia

Computing, Las Vegas, NV, USA, pp. 220-225, Oct. 1998.

[4] P. Basu, A. Narayanan, R. Krishnan and T.D.C. Little, “An Implementation

of Dynamic Service Aggregation for Interactive Video Delivery,” Proc. SPIE

MMCN ’98, San Jose, CA, USA, pp. 110-122, Jan. 1998.

[5] D.P. Bertsekas, “Dynamic Programming and Optimal Control,” vols I and II,

Athena Scientific, Massachusetts. 1995.

[6] A. Dan, P. Shahabuddin, D. Sitaram and D. Towsley, “Channel Allocation

under Batching and VCR Control in Video-On-Demand Systems,” J. Parallel

and Distributed Computing (Special Issue on Multimedia Processing and

Technology), Vol. 30, No. 2, pp. 168-179, Nov. 1995.

[7] A. Dan, D. Sitaram, “Multimedia Caching Strategies for Heterogeneous

Application and Server Environments,” Multimedia Tools and Applications,

Kluwer Academic Publishers, Vol. 4 Number 3, pp. 279-312, May 1997.

[8] D. Eager, M. Vernon, and J. Zahorjan, “Optimal and Efficient Merging

Schedules for Video-on-Demand Servers,” Proc. ACM Multimedia ’99, Orlando,

FL, USA, pp. 199–202, Nov. 1999.

[9] B. Furht, R. Westwater, and J. Ice, “IP Simulcast: A New Technique

for Multimedia Broadcasting over the Internet,” Journal of Computing and

Information Technology, Vol. 6, No. 3, pp. 245-254, Sept. 1998.

[10] M. Garey and D.S. Johnson, “The Rectilinear Steiner Tree Problem is NP-

Complete,” SIAM J. Applied Mathematics, Vol. 32, pp. 826-834, 1977.

[11] L. Golubchik, J.C.S. Lui and R.R. Muntz, “Adaptive Piggybacking: A Novel

Technique for Data Sharing in Video-On-Demand Storage Servers,” Multimedia

Systems, ACM/Springer-Verlag, Vol. 4, pp. 140-155, 1996.

45

[12] T.F. Gonzalez, “On the Computational Complexity of Clustering and Related

Problems,” Proc. IFIP Conference on System Modeling and Optimization, New

York, NY, USA, pp.174-82, Sept. 1981.

[13] K.A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique for true video-

on-demand services,” Proc. ACM Multimedia ’98, pp. 191–200, Bristol, U.K.,

Sept. 1998.

[14] K.A. Hua and S. Sheu, “Skyscraper broadcasting: A new broadcasting

scheme for metropolitan video-on-demand systems,” Proc. ACM SIGCOMM

’97, pp. 89–100, Sept. 1997.

[15] W. Ke, P. Basu, and T.D.C. Little, “Time Domain Modeling of Batching under

User Interaction and Dynamic Piggybacking Schemes,” Proc. SPIE MMCN ’02,

San Jose, CA, Jan. 2002.

[16] R. Krishnan and T.D.C. Little, “Service Aggregation Through a Novel Rate

Adaptation Technique Using a Single Storage Format,” Proc. NOSSDAV ’97,

St. Louis, MO, May 1997.

[17] R. Krishnan, D. Ventakesh and T.D.C. Little, “A Failure and Overload

Tolerance Mechanism for Continuous Media Servers,” Proc. ACM Multimedia

’97, Seattle, WA, USA, pp. 131-142, Nov. 1997.

[18] S.-W. Lau, J.C.S. Lui and L. Golubchik, “Merging Video Streams in a

Multimedia Storage Server: Complexity and Heuristics,” Multimedia Systems,

Vol. 6, No. 1, pp. 29-42, 1998.

[19] M. Leung, J.C.S. Lui and L. Golubchik, “Buffer and resource I/O Pre-Allocation

for Implementing Batching and Buffering Techniques for Video-on-Demand

Systems,” ICDE ’97, Birmingham, UK, Apr. 1997.

[20] J-.P. Nussbaumer, F. Schaffa, “Impact of Channel Allocation Policies on Quality

of Service of Video on Demand over CATV,” Multimedia Tools and Applications,

Kluwer Academic Publishers, Vol. 2, Number 2, pp. 111-131, Mar. 1996.

46

[21] S.K. Rao, P. Sadayappan, F.K. Hwang and P. Shor, “The Rectilinear Steiner

Arborescence Problem”, Algorithmica, Vol. 7, pp. 277-288, 1992.

[22] S. Sheu and K.A. Hua, “Virtual batching: A new scheduling technique for

video-on-demand servers,” Fifth International Conference on Database Systems

for Advanced Applications, Melbourne, Australia, Apr. 1997.

[23] W. Shi and C. Su, “The Rectilinear Steiner Arborescence Problem is NP-

Complete,” Proc. ACM/SIAM SODA ’00, San Francisco, CA, Jan. 2000.

[24] W.D. Sincoskie, “System Architecture for a Large Scale Video on Demand

Service,” Computer Networks and ISDN systems, Vol. 22, pp. 155-162, 1991.

[25] W.-J. Tsai and S.-Y. Lee, “Dynamic Buffer Management for Near Video-

On-Demand Systems,” Multimedia Tools and Applications, Kluwer Academic

Publishers, Vol. 6, Number 1, pp. 61-83, Jan. 1998.

[26] D. Venkatesh and T.D.C. Little, “Dynamic Service Aggregation for Efficient

Use of Resources in Interactive Video Delivery,” Lecture Notes in Computer

Science, Vol. 1018, (Proc. NOSSDAV ’95), T.D.C. Little, R. Gusella, Eds.,

Springer-Verlag, pp. 113-116, Nov. 1995.

[27] P. Wegner, “Why Interaction Is More Powerful Than Algorithms,” CACM, Vol.

40, No. 5, pp. 80-91, May 1997.

47

10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

Merging Window Size (seconds)

C
ha

nn
el

s
R

ec
la

im
ed

 (
%

)

U = 100 (users)

M = 10 (movies)

EMCL
Greedy

10 20 30 40 50 60 70 80 90 100
30

35

40

45

50

55

60

65

70

75

80

Merging Window Size (seconds)

B
an

dw
id

th
 G

ai
ns

 (
%

)

U = 100 (users)

M = 10 (movies)

AFL
RSMA
RSMA−heur

(a) (b)

500 1000 1500 2000 2500
40

45

50

55

60

65

70

Number of Users

C
ha

nn
el

s
R

ec
la

im
ed

 (
%

)

W = 100 secs

M = 100 (movies) EMCL
Greedy

500 1000 1500 2000 2500
20

25

30

35

40

45

Number of Users

B
an

dw
id

th
 G

ai
ns

 (
%

)

W = 100 secs

M = 100 (movies) AFL
RSMA
RSMA−heur

(c) (d)

Figure 7: Static Snapshot Case

48

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Recomputation interval = 10 secs, λ
arr

 = 0.7, λ
int

 = 0.1

Time (seconds)

C
ha

nn
el

s

Users (no aggr)
EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Recomputation interval = 25 secs, λ
arr

 = 0.7, λ
int

 = 0.1

Time (seconds)

C
ha

nn
el

s

Users (no aggr)
EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Recomputation interval = 50 secs, λ
arr

 = 0.7, λ
int

 = 0.1

Time (seconds)

C
ha

nn
el

s

Users (no aggr)
EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Recomputation interval = 100 secs, λ
arr

 = 0.7, λ
int

 = 0.1

Time (seconds)

C
ha

nn
el

s

Users (no aggr)
EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Recomputation interval = 200 secs, λ
arr

 = 0.7, λ
int

 = 0.1

Time (seconds)

C
ha

nn
el

s

Users (no aggr)
EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Recomputation interval = 500 secs, λ
arr

 = 0.7, λ
int

 = 0.1

Time (seconds)

C
ha

nn
el

s

Users (no aggr)
EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Recomputation interval = 750 secs, λ
arr

 = 0.7, λ
int

 = 0.1

Time (seconds)

C
ha

nn
el

s

Users (no aggr)
EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

0 1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

1400

Recomputation interval = 1000 secs, λ
arr

 = 0.7, λ
int

 = 0.1

Time (seconds)

C
ha

nn
el

s

Users (no aggr)
EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

Figure 8: Dynamic Clustering in Steady State

49

0 100 200 300 400 500 600 700 800 900 1000
800

850

900

950

1000

1050

1100

1150

1200

1250

Recomputation Window (seconds)

C
ha

nn
el

s

λ
arr

 = 0.7, λ
int

 = 0.1

EMCL−RSMA
EMCL−AFL
Greedy
EMCL−RSMA−heur
RSMA
RSMA−heur

Figure 9: Dependence of Channel Gains on W

0 1 2 3 4 5
0

500

1000

1500

Policy

C
ha

nn
el

s

0: EMCL−RSMA
1: EMCL−AFL
2: Greedy
3: EMCL−RSMA−heuristic
4: RSMA
5: RSMA−heuristic

λ
arr

=0.1,λ
int

=0

λ
arr

=0.1,λ
int

=0.01

λ
arr

=0.1,λ
int

=0.1

λ
arr

=0.3,λ
int

=0

λ
arr

=0.3,λ
int

=0.01

λ
arr

=0.3,λ
int

=0.1

λ
arr

=0.7,λ
int

=0

λ
arr

=0.7,λ
int

=0.01

λ
arr

=0.7,λ
int

=0.1

λ
arr

=1.0,λ
int

=0

λ
arr

=1.0,λ
int

=0.01

λ
arr

=1.0,λ
int

=0.1

Figure 10: Comparison: With Best W for each Policy

50

0 200 400 600 800 1000 1200
700

710

720

730

740

750

A
vg

. #
U

se
rs

Arrival Rate, λ
a
 = 0.1/sec, Interaction Rate, λ

i
 = 0

0 200 400 600 800 1000 1200
50

100

150

A
vg

. #
S

tr
ea

m
s

Recomputation Interval (secs)

Simulation
Analysis

0 3 5 10 15
715

720

725

λ
a
 = 0.1/sec, λ

int
 = 0

A
vg

. #
U

se
rs

0 3 5 10 15
70

72

74

76

78

A
vg

. #
S

tr
ea

m
s

Event Threshold for Recomputation

(a) RSMA Slide vs. Recomputation Interval (b) Event Triggered RSMA vs. Event Count

Figure 11: Two Variants of RSMA

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

Recomputation Interval (secs)

A
vg

. #
S

tr
ea

m
s

/ A
vg

. #
U

se
rs

λ
a
 = 0.1 /sec, λ

q
 = 0.001 /sec

λ
int

 = 0.00
λ

int
 = 0.01

λ
int

 = 0.02

Figure 12: Effect of Varying Degrees of Interactivity

51

