Task Graphs (TGs) in MANETSs
1.

MobiSys 2004, Research Demos Session

Demo: Distributed Task Execution in Mobile Ad Hoc Networks

Prithwish Basu

Salma Abu Ayyash

Wang Ke
Thomas D.C. Little

Department of Electrical and Computer Engineering, Boston University, Boston, MA.

pbasu@bbn.com,{ ke, saayyash, tdcl } @ bu.edu

Pervasive networks must support distributed
applications requiring exchange of information
between multiple devices

and link failures due to mobility and other wireless
link artifacts.

Synopsis of the Work

*Demonstration of mapping of a distributed
software application onto a MANET

*Decomposition of an application using Task Graphs
. MANETSs inherently prone to network partitioning to decouple its needs and structure from real devices

+Distribution of Task Graph onto the MANET

*Discussion of related work and extensions

- Resolution: Our Task Graph framework and

execution environment

Example Application: Wireless Polling or
Sampling

POLLER a1 Fenway Prk)

*Attribute based sampling in locations such as stadiums, crowded

plazas, cars on highways

*Attributes may be location based or semantic

Proof-of-Concept Prototype on a MANET Testbed

*Heterogeneous computational elements: Notebook and handheld PCs
with IEEE 802.11b cards

*Each device emulates a resource that can be queried
—MANET routing protocol: OLSR
—Mobility emulated using IP packet filtering (iptables)

—Hughes Research Lab’s MobiEmu tool dynamically inserts iptables

rules in Linux kernel to change connectivity
*Task based Application mapping framework:
—taskd (daemon for TG instantiation)

—taskapp (user application)

A Logical Layered View of the
Task Execution Framework

TG Instantiation | <— | TG Instantiation | <— | TG Instantiation

Transport Transport Transport
Manet Routing Manet Routing Manet Routing
PHY/MAC PHY/MAC PHY/MAC

« Layering is logical — cross layer optimizations are possible
» TaskApp can be executed on remote devices
* Our focus/contribution: TG Instantiation/TaskApp layers

How Does It Work?

*Map an application onto a logical Task Graph
representation (Modeling)

*Map the Task Graph onto physical devices by finding
the required resources (Resource Discovery).

*Protocols for a rapid and seamless response to
disruptions in the network due to mobility and failures.

-> Our framework is adaptive, resilient and flexible.

Embedding Task Graphs onto MANETSs

G=(,.E) 9V
nodes (colors indicate Y 1“' (Ep = F; (Paths in G)
distinct device categories) a b2
Embedding 1
A~>al
B->b2
C>c2
u
) e
tree edges ¢
s e
d2
- al b2
B T C a2 Embedding 2
non-tree edge d1 A>a2
bl B->bl
Task Graph Cel
u
TG = (V. Er) cl
c2

Components of the Solution

) Instantiation
trigger | | of TG | Task
o e i execution
[genemle
m ililyi moility
representation
of task as Reliable
data-flow tuples execution
Design Time Discovery Time Run Time

Application Framework

staskd: handles instantiation and recovery from disconnections

—User space implementation with Linux socket API

—Single threaded daemon using select()
—Uses UDP (with re-transmissions) and TCP

staskapp: processes application data

—To react to delays and failures in taskd

—To buffer ADUs for reliable task execution

—Can be already existing on a remote node

—Or can be shipped as snippets of mobile code which can
execute in a sandbox environment

MobiSys 2004, Research Demos Session

