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Pervasive networks must support distributed
applications requiring exchange of information
between multiple devices

and link failures due to mobility and other wireless
link artifacts.

Synopsis of the Work

*Demonstration of mapping of a distributed
software application onto a MANET

*Decomposition of an application using Task Graphs
. MANETSs inherently prone to network partitioning to decouple its needs and structure from real devices

+Distribution of Task Graph onto the MANET

*Discussion of related work and extensions

- Resolution: Our Task Graph framework and

execution environment

Example Application: Wireless Polling or
Sampling
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*Attribute based sampling in locations such as stadiums, crowded

plazas, cars on highways

*Attributes may be location based or semantic

Proof-of-Concept Prototype on a MANET Testbed

*Heterogeneous computational elements: Notebook and handheld PCs
with IEEE 802.11b cards

*Each device emulates a resource that can be queried
—MANET routing protocol: OLSR
—Mobility emulated using IP packet filtering (iptables)

—Hughes Research Lab’s MobiEmu tool dynamically inserts iptables

rules in Linux kernel to change connectivity
*Task based Application mapping framework:
—taskd (daemon for TG instantiation)

—taskapp (user application)

A Logical Layered View of the
Task Execution Framework
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« Layering is logical — cross layer optimizations are possible
» TaskApp can be executed on remote devices
* Our focus/contribution: TG Instantiation/TaskApp layers

How Does It Work?

*Map an application onto a logical Task Graph
representation (Modeling)

*Map the Task Graph onto physical devices by finding
the required resources (Resource Discovery).

*Protocols for a rapid and seamless response to
disruptions in the network due to mobility and failures.

-> Our framework is adaptive, resilient and flexible.

Embedding Task Graphs onto MANETSs
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Components of the Solution

) Instantiation
trigger | | of TG | Task
o e i execution
[genemle
m ililyi moility
representation
of task as Reliable
data-flow tuples execution
Design Time Discovery Time Run Time

Application Framework

staskd: handles instantiation and recovery from disconnections

—User space implementation with Linux socket API

—Single threaded daemon using select()
—Uses UDP (with re-transmissions) and TCP

staskapp: processes application data

—To react to delays and failures in taskd

—To buffer ADUs for reliable task execution

—Can be already existing on a remote node

—Or can be shipped as snippets of mobile code which can
execute in a sandbox environment
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