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Abstract—We consider two distributed algorithms to com- active node generates messages at constant rate and sends
pute functions that admit flexible decomposition in terms of egch message to a randomly selected neighbor. Algorithm
pairwise computations. Under these algorithms a transmitting SIMPLE-WALK maintains a single active node, whose tra-

node becomes inactive and does not transmit further messages. t - d Ik th icati h Local
until it is reactivated by a message reception from another jectory I1s a random walk on the communication graph. Loca

node. The algorithms thereby have sequential nature and bear a Processing at each active node exploits the decomposability
close relationship to random walks. We quantify their time and of the considered functions to guarantee that the value of
message complexities on the-dimensional torus and establish interest is computed when each node becomes active at least
substantial gains in message complexity with respect to gossipgnce  Both the time and the message complexities of this
algorithms. The algorithms exhibit a favorable tradeoff between - . .
the two complexities in lower dimensions. In particular on the algorithm are det(?rmlned by the cover time of th_e,r_andom
2-dimensional torus with n nodes, time and per-node message Walk. Under algorithmCOALESCEN®Il nodes are initially
complexities scale as©(nlogn) and O((logn)?) respectively, active and the computation is completed when a single active
whereas both complexities scale a&(n) for gossip algorithms.  node remains in the network. This latter algorithm is closely
related to coalescing random walks. We quantify the time and
the message complexities of these algorithms on the lattice
Scalability of information dissemination arise in a varietyorus and provide a comparison with gossip algorithms.
of applications. In database synchronization, for instance, theThe abstract setting considered in this paper is as follows:
main objective is to rapidly make available a scattered Segt A be a set and lef : A2 — A be an operation on.
of information items to a set of locations. Sensor applic&/e shall assume that is commutative and associative, and
tions have different paradigms in that they typically requirthat A has an identity element with respectftoThat is, there
determination of a certain feature, such as the average or #xistse € A such thatf(\,e) = X for A € A. Let F;, = f.
maximum, of the scattered information. Furthermore energyfF®r n > 3 and given a permutation of {1,2,--- ,n} define
often a scarce resource in such applications; in turn completithg mappingF,, : A™ — A recursively by
the computational task with minimal message transmissions is

I. INTRODUCTION

of importance_ Fn(/\la /\27 T 7/\71) = f(>\7r(1)7 Fn—l(/\‘/r(Q)a )‘Tr(?))v T 7/\7r(n)))a
The theme of this paper is a constructive investigation of . @)
the tradeoff between the time and the number of messad@s*1: A2+ -, A € A. Note that the mapping’, does not

required to compute a certain class of decomposable fuiff@Pend onr owing to the properties of. )
tions. Several decentralized algorithms have been previously Exa@mple 1.1:Let k > 1 be an integer and IeM"X’“
proposed for similar computational problems in [1], [3], [7],be the set ofk-dimensional positive definite matrices. For
[8], [10]. These algorithms are based on parallel asynchrondus= 1,2+~ n let Ti € R agd letw; € M"™**. The
transmissions of local estimates, which in turn lead to injvéighted averaged;_, w_i)fl 2_i— wiw; can be expressed
proved estimates at recipient nodes. On the one hand t#fghe form (1) by choosing\ = {R > MM} U {e} with
operational philosophy has the favorable properties of robude-= (%i; wi), and by setting
ness against message losses and unknown network topologies. FOON) = (w+ ') Ywz +w'z') | w+w'),
On the other hand it has a fundamental disadvantage from
the energy viewpoint, mainly because the liberal nature fdr A = (z,w), N = (2/,w’) € A — {e}.
individual messaging decisions results in substantial numbeM/e are concerned with distributed computation of
of largely redundant message transmissions. F,(A1, A2, , Ay) In the case when eack; is known to a

We consider two randomized algorithms that lead to strikingdjstinct agent. This computational effort is subject to com-
gains in message complexity while enjoying similar opemunication constraints summarized by an undirected graph
ational advantages as previously studied algorithms. Und&r= (V, F) where each node if¥ denotes an agent (hence
the algorithms studied here, a transmitting node becom@s = n) and an edg¢i, j) € E indicates a bidirectional com-
inactive and does not transmit further messages until it fisunication link between agenisand j. To avoid trivialities
reactivated by a message reception from another node. &ns assumed to be connected.



Variables:status, value

Given a spanning tree @¥, decomposability ofr,, permits .
P 9 P y o p Initialize : value «— \;;

computation off;, (A1, A, - - - , \,,) Via a sequence of pairwise

operations on the edges of this tree. In particular, the value of ‘active’  if i =i,
. . SIMPLE — WALK : tat .

F,(A1,A\2,-+-,\,) can be obtained at a designated node at status = idle else.

the expense ofi — 1 message transmissions in the network  COALESCENT : status <« ‘active’.

and in time proportional to the diameter ¢f. Time and
energy aspects of optimal centralized algorithms beyond this ProcedureSend)
simplistic view were considered by [5], [6]. Rather than such  if( status == ‘active’ ) {
centralized algorithms our focus here is on algorithms that ~ choose neighbor;
have local specifications, require no centralized coordination, ~ send(neighbor value );
and exhibit robustness to message losses and topological Vvalue «—e;
variations. status «— ‘idle’;

Section Il gives formal definitions of studied algorithms. }
Time and message complexities of these algorithms on the ProcedureReceivémessage)
d-dimensional lattice torus are quantified in Section Ill and  value +« f(value, messagg
compared to those of gossip algorithms in Section IV. The status « ‘active”;
paper concludes with final remarks in Section V. }

Fig. 1. Pseudo-code for algorithn&IMPLE-WALK and COALESCENT

[I. ALGORITHM AND COMPLEXITY DEFINITIONS at nodei. Send() is activated by the local Poisson clock at the node, and

. . . . Receive() is activated by message reception from another node. The two
a) Algorithms: We study two algorithms coined here agygorithms differ in the initialization of the variablgtatus . That is, only
SIMPLE-WALK and COALESCENTA pseudo-code for the one node starts out active BIMPLE-WALKwhereas all nodes are initially

two algorithms is given in Figure 1. The algorithms hav@ctive inCOALESCENT

identical dynamic specification, but differ in their initialization.

Under each algorithm, each node maintains two \{ariablesNote that if the recipient of a message has valugist
value andstatus . Content ofvalue takes values im\,
and status is either ‘active’ or ‘idle’. We identify these
variables byv;(t) and¢;(t) at nodei € V' at timet¢ > 0; in

before reception then the value at the originating node simply
passes onto the recipient node. Otherwise, the value of the
recipient node is set to the image of the two values urfder

particular thereby executing a significant step towards computation of
vi(t) = the content ofvalue of nodei at timet, Fo(A1,A2,-+- . Ay). Such a step occurs if the recipient node

1 if status  of nodei is ‘active’ at timet becomes active for the first time undétMPLE-WALK and
&) = { 0 else " if the recipient is already active und®OALESCENT

b) Correctness and complexityfhe following sample-
Initially v;(0) = \; for each nodei. The initial value&;(0) Ppath property is useful in proving that both algorithms compute
(i.e. of status ) depends on the particular algorithm in thdhe exact value of’, (A1, Az, - -+, Ay,) in finite time:

following fashion: UnderSIMPLE-WALK &;(0) = 1 for Proposition 2.1: Under both SIMPLE-WALK and
exactly one node, say nodg, whereas¢;(0) = 1 for all COALESCENT

nodesi under COALESCENTVariablesvalue, status Fo(0r(), 09(), -, om () = Fa(Ats Az -+ s An)y £ 0.

evolve according to the same rules under b.oth algorlthms:Let ¢ and e be random times that are defined as follows:
Namely, each node has an independent Poisson clock that

ticks at unit rate. When the local clock of noddcks, say at 7s = inf{t: each node becomes active by timé
time ¢,, the node does not take any action unless it is active e = inf{t: Zfi(t) =1}
(i.e. &(t,) = 1). Otherwise, if¢;(t;) = 1, the node chooses p

a neighbor at random, sends its current valug, ) to that
neighbor, and set$v;(t,),&;(t,)) = (e,0). In particular it
becomes idle and ceases message transmission until it bec
active again. The selected neighbor, say npdsetsv;(t,) =
f(v;(t,),vi(t,)) and becomes active by settigg(t,) = 1.
Inh blo.th algor|thm§ ankactl\;]e node can'gehlnterpreteq Corollary 2.1: Let t > 75 (respectivelyt > 7<) and
be holding a transmit token that moves with the transmitt i(t) be the unique active node at timeunder algorithm

message. Reflecting on the algorithm speciﬁcation reve ﬁ\/IPLE-WALK(resp. COALESCENT For sucht,

that two such tokens coalesce into one if they meet at the

same node. Clearh5IMPLE-WALK maintains a single such Vi) (1) = Fu(A, Az, An).

token in the network. An illustrative scenario that depicts the We regardrs and 7 as termination times of respectively
evolution of token locations (equivalently of active nodes}IMPLE-WALKandCOALESCENTn the sense that the value
underCOALESCENTS given by Figure 2. of F,, (A1, A2, -+, Ay) is known to the single active node from

In particular, under algorithnCOALESCENTa single active
onoeds? remains in the network after timig . Note also that for
{n> 7c (and fort > 7¢ underSIMPLE-WALK) v;(t) = e for
all nodesi such that;(t) = 0; in turn Proposition 2.1 has the

{8llowing corollary:



Number of active nodes z &)

I

Fig. 2. An illustration of evolution of active nodes in algorithm

COALESCENTThe circles in the figure represent nodes that are active Big. 3. A sample path of the number of active nodes under algorithm

some arbitrary time, and arrows represent message transmissions tafter COALESCENTo;, denotes the first time thdt active nodes remain in the

in the order indicated by their numbers. After message 1 the transmitting ametwork. This trajectory has qualitatively different statistics for small and large

receiving nodes exchange their status, and the value of the transmitting neakeies oft/sx. The mean of the shaded area is the mean aggregate number

passes onto the receiver. Message 2 results in one less active node inofHeansmitted messages in the network.

network the transmitter becomes idle whereas the receiver maintain its active

status. The number of active nodes do not change due to messages 3 or 4,

but decrease again due to message 5. . . .
present algorithms. In the scope of this sectigns thus ad-

dimensional lattice torus] > 1, with N nodes. In particular

there on. Ifn is known in advance then the algorithms can bé = N,
modified, namely by including a counter that moves with the Let
Lransmn tpken(s), to allow recognition of the termination time my =4 N2(logN)? if d=2
y an active node. Nloo N if d>3
Definition 2.1: Average time complexityf algorithm & -
SIMPLE-WALK (resp. COALESCENTT refers to E[rs] The following theorem determines the growth rate of the time

N2 ifd=1

(resp.E[rc]). as well as the message complexitiesSOMPLE-WALK
In adopting a measure of messaging complexity,nleft) Theorem 3.1: ([2], [11])

and nc(t) be the total number of transmitted messages in .

the network by timet under algorithmsSIMPLE-WALK and IIZ{ZILSBOPE{TS]/”@N <

COALESCENTespectively: hm mf Elrs]/my > O.

Definition 2.2: Average per-node message complegity
algorithm SIMPLE-WALK (resp. COALESCENTT refers to
n~'Elns(s)] (resp.n~"Enc(rc)))-

For each time define¢(t) = (£1(t), & (t), - -+, €,(t)). Note

We next turn toCOALESCENEnd determine its average
time complexity via previously obtained results on the coa-
lescing random walk. Let

that (£(¢) : t > 0) is a time-homogeneous Markov process N? ifd=1
under both algorithms. More preciself§(t) : ¢t > 0) is a sy = N2logN if d=2
random walk onG under SIMPLE-WALK and a coalescing Nd if d> 3.

random walk onG under COALESCENTIn particular the
average time complexity @IMPLE-WALKis the mean cover
time of G. Average message complexities of the algorithms are o hm me[TC]/sN - hm SupE[Tc]/sN < oo,
characterized by the following lemma:

Theorem 3.2: [4, Theorem 6]

Obtalnlng the message complexny QIOALESCENTre-

Lemma 2.1: quires a handle on the number of active nodes in the network.
B s B A typical sample path of the proces$ ", &(t) : ¢t > 0)
Els(rs)] = E /0 Z&(t)dt] = Elrs); is illustrated in Figure 3. This process has two qualitatively
o ! different phases as illustrated by the figure: For small values
Elnc(re)] = E / Zgi(t)dt ) of ¢ (m_ore precisely for = o(s_N)) there are _pl_enty of acU_ve
0 ; nodes in the network, but their number diminish very quickly

due to their high density. For = Q(sy) only a bounded

number of carrier nodes remain. The former phase is short
We specialize to lattice tori for which a substantial literaturbut it involves a high rate of message transmissions, whereas

on random walks sheds light on the complexity analysis of thiee latter phase lasts long but fewer messages are transmitted

IIl. TIME AND MESSAGECOMPLEXITIES ON THETORUS



per unit time. The following theorem provides an upper bourld [3] K(e, P) is considered as a termination time for Al-
for the message complexity based on a boundsoq’, £(t)] gorithm GOSSIP-AVE(P) and minimization ofK (e, P) is
for t = o(sn) and on a shaper characterization of the processught by proper choice oP. Here we adopt the same

(32, &(t) : t =Q(sn)) obtained in [4]. interpretation for comparison purposes. It should perhaps be
Theorem 3.3: [9, Theorem 7] noted here that this is a fairly weak stopping criterion as
) |2(Tk (e,p)) — T1)||oo/|Z| may be much larger thaa. The
hjzns‘lpE[”C(TC)]/mN < oo following theorem provides a lower bound fdf (s, P) that

Remark 3.1: Note that E[nc(t¢)] > E[rc] since applies uniformly for allP on thed-dimensional lattice torus:

S, &(t) > 1 for all t, and therefore Theorem 3.2 provides ~ Theorem 4.1: [9, Theorem 8] LetG' be d-dimensional
a lower bound on the growth rate @f[nc(7¢)]. This bound lattice torus with N¢ nodes. Givens > 0, K(¢,P) =
is order-wise tight ford = 1 and is off by at most a factor 2(N¢*2) for all admissibleP.
of log N in higher dimensions. Simulations suggest that the We note thati (s, P) is a termination criterion in terms of
growth rate ofE[nc(7¢)] is strictly larger thars - and strictly the transmitted messages in the network. SpecificAlly;,, P)
smaller thanmy. represents half of the aggregate number of messages transmit-

In comparing the two algorithms, we note that on the oried in the network before AlgorithnGOSSIP-AVE(P) ter-
handCOALESCENEntails higher instantaneous rate of aggréninates (to be precise, every time a clock ticks two messages
gate message transmissions in the network sjnge;(t) > 1 are transmitted in opposite directions on some edge). This
for t < 7. On the other hand it typically terminates muci®bservation translates to a termination-time estimate since the
faster thanSIMPLE-WALK Simulation results in Figure 4 point processri, 72,73, - - - ) is Poisson with rate and it takes
indicate that this compromise settles in favolGBALESCENT roughly K (e, P)/n time units to produce a total &K (e, P)

on the 2-dimensional torus. messages. Theorem 4.1 thus has the following corollary:
Corollary 4.1: On the d-dimensional lattice torus with
IV. COMPARISON WITH GOSSIPALGORITHMS N4 nodes, both the time and the per-node message complex-

We further specialize to distributed computation of avlies of GOSSIP-AVE(P) are Q(N?) for any admissibleP.
erages, and compare time and message complexities of Remark 4.1: ([9, Lemma 15]) The two complexities of
SIMPLE-WALK and COALESCENTwith those of gossip GOSSIP-AVE(P) scale asO(N?) when P reflects uniform
algorithms. Namely, the task here is to obtain the algebr&iBoice among neighbors in the torus.
average of, numberszy, o, - - - , 2, each of which is known In Figure 5 simulation results for the number of messages
to a distinct node ofG. As noted by Example 1.1 this transmitted per node under algorittB©OALESCEN&re com-
task can be accomplished by algorith@¥MPLE-WALK or pared to an analytical lower bound for thoseGDSSIP-AVE

COALESCENDy proper choice ofy, f and \; (in particular obtained via [3, Theorem 3]. Although the average time
by choosing\; = (x;,1) for nodeq). complexity of COALESCENTs larger, the per-node message

In broad terms gossip algorithms refer to distributed raffansmission rate undeCOALESCENTends ton~' with

domized algorithms that are based on pairwise relaxatiofi®€e and the overall effect is a substantial asymptotic gain
between randomly chosen node pairs. In the present contéxinessage complexity with respect ®OSSIP-AVE

a pairwise relaxation refers to averaging of two values avail- Complexity of GOSSIP-AVE(P) is inherently related to
able at distinct nodes. For completeness we next give a ftile spectral gap of the stochastic matfiq3], and thereby to
description of this algorithm as studied in [3]. In what followgNixing times of random walks on the torus. Conclusions of the
a stochastic matrid’ = [P;j],x, is calledadmissiblefor G present section are thus expected to hold for other distributed

if P; = 0 unless nodes and j are neighbors inG. The algorithms such as those of [7], [8], [10] that are based on
algorithm is parameterized by sudh powers of the incidence matrix of an underlying connectivity
Algorithm GOSSIP-AVE(P): Each node maintains a real 9raph, provided that a similar stopping criteria is adopted.
valued variable with initial value;(0) = z;. At the tick of a
local Poisson clock, say at tintg, node: chooses a neighbor ) . ) )
j with respect to the distributiogP;; : j = 1,2,--- ,n) and Main con.clusmns of the paper are summarized in Table I.
both nodes update their internal variablesg8,) = z;(t,) = On the I_attlce_ torus the algorithms mt_roduced here lead to
(z:(t5) + 2 (7)) /2. subst_ant|al gains in message_complexﬂy gqmpfared to_ gossip
Let z denote the average af,,zs, - - ,x,, let z(t) denote @lgorithms. These gains entail some sacrifice in termination
the vector(z;(t), 22(t), - , z,(t)) of node values at time, time bu.t the tradeoff appears favorable., pargcular_ly in lower
and 1 denote the vector of all 1s. Define as thekth time dimensions. The algorithms are parsimonious in message
instant such that some local clock ticks and thereby triggdf@nsmission due to their sequential nature and thereby appear
messaging in the network. Far > 0 let the deterministic Suitable for energy-critical applications.
quantity K (¢, P) be defined by

V. CONCLUSION
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