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Abstract— We consider two distributed algorithms to com-
pute functions that admit flexible decomposition in terms of
pairwise computations. Under these algorithms a transmitting
node becomes inactive and does not transmit further messages
until it is reactivated by a message reception from another
node. The algorithms thereby have sequential nature and bear a
close relationship to random walks. We quantify their time and
message complexities on thed-dimensional torus and establish
substantial gains in message complexity with respect to gossip
algorithms. The algorithms exhibit a favorable tradeoff between
the two complexities in lower dimensions. In particular on the
2-dimensional torus with n nodes, time and per-node message
complexities scale asΘ(n log n) and O((log n)2) respectively,
whereas both complexities scale asΩ(n) for gossip algorithms.

I. I NTRODUCTION

Scalability of information dissemination arise in a variety
of applications. In database synchronization, for instance, the
main objective is to rapidly make available a scattered set
of information items to a set of locations. Sensor applica-
tions have different paradigms in that they typically require
determination of a certain feature, such as the average or the
maximum, of the scattered information. Furthermore energy is
often a scarce resource in such applications; in turn completing
the computational task with minimal message transmissions is
of importance.

The theme of this paper is a constructive investigation of
the tradeoff between the time and the number of messages
required to compute a certain class of decomposable func-
tions. Several decentralized algorithms have been previously
proposed for similar computational problems in [1], [3], [7],
[8], [10]. These algorithms are based on parallel asynchronous
transmissions of local estimates, which in turn lead to im-
proved estimates at recipient nodes. On the one hand this
operational philosophy has the favorable properties of robust-
ness against message losses and unknown network topologies.
On the other hand it has a fundamental disadvantage from
the energy viewpoint, mainly because the liberal nature of
individual messaging decisions results in substantial number
of largely redundant message transmissions.

We consider two randomized algorithms that lead to striking
gains in message complexity while enjoying similar oper-
ational advantages as previously studied algorithms. Under
the algorithms studied here, a transmitting node becomes
inactive and does not transmit further messages until it is
reactivated by a message reception from another node. An

active node generates messages at constant rate and sends
each message to a randomly selected neighbor. Algorithm
SIMPLE-WALK maintains a single active node, whose tra-
jectory is a random walk on the communication graph. Local
processing at each active node exploits the decomposability
of the considered functions to guarantee that the value of
interest is computed when each node becomes active at least
once. Both the time and the message complexities of this
algorithm are determined by the cover time of the random
walk. Under algorithmCOALESCENTall nodes are initially
active and the computation is completed when a single active
node remains in the network. This latter algorithm is closely
related to coalescing random walks. We quantify the time and
the message complexities of these algorithms on the lattice
torus and provide a comparison with gossip algorithms.

The abstract setting considered in this paper is as follows:
Let Λ be a set and letf : Λ2 7→ Λ be an operation onΛ.
We shall assume thatf is commutative and associative, and
thatΛ has an identity element with respect tof . That is, there
existse ∈ Λ such thatf(λ, e) = λ for λ ∈ Λ. Let F2 = f .
For n ≥ 3 and given a permutationπ of {1, 2, · · · , n} define
the mappingFn : Λn 7→ Λ recursively by

Fn(λ1, λ2, · · · , λn) = f(λπ(1), Fn−1(λπ(2), λπ(3), · · · , λπ(n))),
(1)

for λ1, λ2, · · · , λn ∈ Λ. Note that the mappingFn does not
depend onπ owing to the properties off .

Example 1.1: Let k ≥ 1 be an integer and letMk×k

be the set ofk-dimensional positive definite matrices. For
i = 1, 2, · · · , n let xi ∈ Rk and let wi ∈ Mk×k. The
weighted average(

∑n
i=1 wi)−1

∑n
i=1 wixi can be expressed

in the form (1) by choosingΛ = {Rk ×Mk×k} ∪ {e} with
λi = (xi, wi), and by setting

f(λ, λ′) = ((w + w′)−1(wx + w′x′) , w + w′),

for λ = (x,w), λ′ = (x′, w′) ∈ Λ− {e}.
We are concerned with distributed computation of

Fn(λ1, λ2, · · · , λn) in the case when eachλi is known to a
distinct agent. This computational effort is subject to com-
munication constraints summarized by an undirected graph
G = (V, E) where each node inV denotes an agent (hence
|V | = n) and an edge(i, j) ∈ E indicates a bidirectional com-
munication link between agentsi and j. To avoid trivialities
G is assumed to be connected.



Given a spanning tree ofG, decomposability ofFn permits
computation ofFn(λ1, λ2, · · · , λn) via a sequence of pairwise
operations on the edges of this tree. In particular, the value of
Fn(λ1, λ2, · · · , λn) can be obtained at a designated node at
the expense ofn − 1 message transmissions in the network
and in time proportional to the diameter ofG. Time and
energy aspects of optimal centralized algorithms beyond this
simplistic view were considered by [5], [6]. Rather than such
centralized algorithms our focus here is on algorithms that
have local specifications, require no centralized coordination,
and exhibit robustness to message losses and topological
variations.

Section II gives formal definitions of studied algorithms.
Time and message complexities of these algorithms on the
d-dimensional lattice torus are quantified in Section III and
compared to those of gossip algorithms in Section IV. The
paper concludes with final remarks in Section V.

II. A LGORITHM AND COMPLEXITY DEFINITIONS

a) Algorithms: We study two algorithms coined here as
SIMPLE-WALK and COALESCENT. A pseudo-code for the
two algorithms is given in Figure 1. The algorithms have
identical dynamic specification, but differ in their initialization.
Under each algorithm, each node maintains two variables
value and status . Content ofvalue takes values inΛ,
and status is either ‘active’ or ‘idle’ . We identify these
variables byvi(t) and ξi(t) at nodei ∈ V at time t ≥ 0; in
particular

vi(t) = the content ofvalue of nodei at time t,

ξi(t) =
{

1 if status of nodei is ‘active’ at timet,
0 else.

Initially vi(0) = λi for each nodei. The initial valueξi(0)
(i.e. of status ) depends on the particular algorithm in the
following fashion: UnderSIMPLE-WALK ξi(0) = 1 for
exactly one node, say nodeio, whereasξi(0) = 1 for all
nodesi under COALESCENT. Variablesvalue, status
evolve according to the same rules under both algorithms:
Namely, each node has an independent Poisson clock that
ticks at unit rate. When the local clock of nodei ticks, say at
time to, the node does not take any action unless it is active
(i.e. ξi(t−o ) = 1). Otherwise, ifξi(t−o ) = 1, the node chooses
a neighbor at random, sends its current valuevi(t−o ) to that
neighbor, and sets(vi(to), ξi(to)) = (e, 0). In particular it
becomes idle and ceases message transmission until it becomes
active again. The selected neighbor, say nodej, setsvj(to) =
f(vj(t−o ), vi(t−o )) and becomes active by settingξj(to) = 1.

In both algorithms an active node can be interpreted to
be holding a transmit token that moves with the transmitted
message. Reflecting on the algorithm specification reveals
that two such tokens coalesce into one if they meet at the
same node. Clearly,SIMPLE-WALK maintains a single such
token in the network. An illustrative scenario that depicts the
evolution of token locations (equivalently of active nodes)
underCOALESCENTis given by Figure 2.

Variables:status, value .
Initialize : value ← λi;

SIMPLE− WALK : status←
{

‘active’ if i = io;
‘idle’ else.

COALESCENT : status← ‘active’.

ProcedureSend()
if( status == ‘active’ ) {

choose neighbor;
send(neighbor ,value );
value ← e;
status ← ‘idle’;
}

ProcedureReceive(message){
value ← f(value, message);
status ← ‘active’;
}

Fig. 1. Pseudo-code for algorithmsSIMPLE-WALK and COALESCENT
at nodei. Send() is activated by the local Poisson clock at the node, and
Receive() is activated by message reception from another node. The two
algorithms differ in the initialization of the variablestatus . That is, only
one node starts out active inSIMPLE-WALKwhereas all nodes are initially
active inCOALESCENT.

Note that if the recipient of a message has valuee just
before reception then the value at the originating node simply
passes onto the recipient node. Otherwise, the value of the
recipient node is set to the image of the two values underf ,
thereby executing a significant step towards computation of
Fn(λ1, λ2, · · · , λn). Such a step occurs if the recipient node
becomes active for the first time underSIMPLE-WALK, and
if the recipient is already active underCOALESCENT.

b) Correctness and complexity:The following sample-
path property is useful in proving that both algorithms compute
the exact value ofFn(λ1, λ2, · · · , λn) in finite time:

Proposition 2.1: Under both SIMPLE-WALK and
COALESCENT,

Fn(v1(t), v2(t), · · · , vn(t)) = Fn(λ1, λ2, · · · , λn), t > 0.
Let τS andτC be random times that are defined as follows:

τS = inf{t : each node becomes active by timet }
τC = inf{t :

∑

i

ξi(t) = 1}.

In particular, under algorithmCOALESCENT, a single active
node remains in the network after timeτC . Note also that for
t > τC (and for t > τS underSIMPLE-WALK) vi(t) = e for
all nodesi such thatξi(t) = 0; in turn Proposition 2.1 has the
following corollary:

Corollary 2.1: Let t ≥ τS (respectivelyt ≥ τC) and
let i(t) be the unique active node at timet under algorithm
SIMPLE-WALK (resp. COALESCENT). For sucht,

vi(t)(t) = Fn(λ1, λ2, · · · , λn).
We regardτS and τC as termination times of respectively

SIMPLE-WALKandCOALESCENTin the sense that the value
of Fn(λ1, λ2, · · · , λn) is known to the single active node from
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Fig. 2. An illustration of evolution of active nodes in algorithm
COALESCENT. The circles in the figure represent nodes that are active at
some arbitrary timeto and arrows represent message transmissions afterto,
in the order indicated by their numbers. After message 1 the transmitting and
receiving nodes exchange their status, and the value of the transmitting node
passes onto the receiver. Message 2 results in one less active node in the
network the transmitter becomes idle whereas the receiver maintain its active
status. The number of active nodes do not change due to messages 3 or 4,
but decrease again due to message 5.

there on. Ifn is known in advance then the algorithms can be
modified, namely by including a counter that moves with the
transmit token(s), to allow recognition of the termination time
by an active node.

Definition 2.1: Average time complexityof algorithm
SIMPLE-WALK (resp. COALESCENT) refers to E[τS ]
(resp.E[τC ]).

In adopting a measure of messaging complexity, letηS(t)
and ηC(t) be the total number of transmitted messages in
the network by timet under algorithmsSIMPLE-WALKand
COALESCENTrespectively:

Definition 2.2: Average per-node message complexityof
algorithm SIMPLE-WALK (resp. COALESCENT) refers to
n−1E[ηS(τS)] (resp.n−1E[ηC(τC)]).

For each timet defineξ(t) , (ξ1(t), ξ2(t), · · · , ξn(t)). Note
that (ξ(t) : t ≥ 0) is a time-homogeneous Markov process
under both algorithms. More precisely,(ξ(t) : t ≥ 0) is a
random walk onG underSIMPLE-WALK, and a coalescing
random walk onG under COALESCENT. In particular the
average time complexity ofSIMPLE-WALKis the mean cover
time ofG. Average message complexities of the algorithms are
characterized by the following lemma:

Lemma 2.1:

E[ηS(τS)] = E

[∫ τS

0

∑

i

ξi(t)dt

]
= E[τS ],

E[ηC(τC)] = E

[∫ τC

0

∑

i

ξi(t)dt

]
.

III. T IME AND MESSAGECOMPLEXITIES ON THETORUS

We specialize to lattice tori for which a substantial literature
on random walks sheds light on the complexity analysis of the
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Fig. 3. A sample path of the number of active nodes under algorithm
COALESCENT. σk denotes the first time thatk active nodes remain in the
network. This trajectory has qualitatively different statistics for small and large
values oft/sN . The mean of the shaded area is the mean aggregate number
of transmitted messages in the network.

present algorithms. In the scope of this sectionG is thus ad-
dimensional lattice torus,d ≥ 1, with Nd nodes. In particular
n = Nd.

Let

mN =





N2 if d = 1
N2(log N)2 if d = 2
Nd log N if d ≥ 3.

The following theorem determines the growth rate of the time
as well as the message complexities ofSIMPLE-WALK:

Theorem 3.1: ([2], [11])

lim sup
N→∞

E[τS ]/mN < ∞,

lim inf
N→∞

E[τS ]/mN > 0.

We next turn toCOALESCENTand determine its average
time complexity via previously obtained results on the coa-
lescing random walk. Let

sN =





N2 if d = 1
N2 log N if d = 2
Nd if d ≥ 3.

Theorem 3.2: [4, Theorem 6]

0 < lim inf
N→∞

E[τC ]/sN = lim sup
N→∞

E[τC ]/sN < ∞.

Obtaining the message complexity ofCOALESCENTre-
quires a handle on the number of active nodes in the network.
A typical sample path of the process(

∑
i ξi(t) : t ≥ 0)

is illustrated in Figure 3. This process has two qualitatively
different phases as illustrated by the figure: For small values
of t (more precisely fort = o(sN )) there are plenty of active
nodes in the network, but their number diminish very quickly
due to their high density. Fort = Ω(sN ) only a bounded
number of carrier nodes remain. The former phase is short
but it involves a high rate of message transmissions, whereas
the latter phase lasts long but fewer messages are transmitted



per unit time. The following theorem provides an upper bound
for the message complexity based on a bound onE[

∑
i ξ(t)]

for t = o(sN ) and on a shaper characterization of the process
(
∑

i ξi(t) : t = Ω(sN )) obtained in [4].
Theorem 3.3: [9, Theorem 7]

lim sup
N→∞

E[ηC(τC)]/mN < ∞.

Remark 3.1: Note that E[ηC(τC)] > E[τC ] since∑
i ξi(t) ≥ 1 for all t, and therefore Theorem 3.2 provides

a lower bound on the growth rate ofE[ηC(τC)]. This bound
is order-wise tight ford = 1 and is off by at most a factor
of log N in higher dimensions. Simulations suggest that the
growth rate ofE[ηC(τC)] is strictly larger thansN and strictly
smaller thanmN .

In comparing the two algorithms, we note that on the one
handCOALESCENTentails higher instantaneous rate of aggre-
gate message transmissions in the network since

∑
i ξi(t) > 1

for t < τC . On the other hand it typically terminates much
faster thanSIMPLE-WALK. Simulation results in Figure 4
indicate that this compromise settles in favor ofCOALESCENT
on the 2-dimensional torus.

IV. COMPARISON WITH GOSSIPALGORITHMS

We further specialize to distributed computation of av-
erages, and compare time and message complexities of
SIMPLE-WALK and COALESCENTwith those of gossip
algorithms. Namely, the task here is to obtain the algebraic
average ofn numbersx1, x2, · · · , xn each of which is known
to a distinct node ofG. As noted by Example 1.1 this
task can be accomplished by algorithmsSIMPLE-WALK or
COALESCENTby proper choice ofΛ, f andλi (in particular
by choosingλi = (xi, 1) for nodei).

In broad terms gossip algorithms refer to distributed ran-
domized algorithms that are based on pairwise relaxations
between randomly chosen node pairs. In the present context
a pairwise relaxation refers to averaging of two values avail-
able at distinct nodes. For completeness we next give a full
description of this algorithm as studied in [3]. In what follows
a stochastic matrixP = [Pij ]n×n is calledadmissiblefor G
if Pij = 0 unless nodesi and j are neighbors inG. The
algorithm is parameterized by suchP :

Algorithm GOSSIP-AVE(P ): Each nodei maintains a real
valued variable with initial valuezi(0) = xi. At the tick of a
local Poisson clock, say at timeto, nodei chooses a neighbor
j with respect to the distribution(Pij : j = 1, 2, · · · , n) and
both nodes update their internal variables aszi(to) = zj(to) =
(zi(t−o ) + zj(t−o ))/2.

Let x̄ denote the average ofx1, x2, · · · , xn, let z(t) denote
the vector(z1(t), z2(t), · · · , zn(t)) of node values at timet,
and 1 denote the vector of all 1s. Defineτk as thekth time
instant such that some local clock ticks and thereby triggers
messaging in the network. Forε > 0 let the deterministic
quantityK(ε, P ) be defined by

K(ε, P ) = sup
z(0)

inf
{

k : Pr

(‖z(τk)− x̄1‖2
‖z(0)‖2

> ε

)
6 ε

}
.

In [3] K(ε, P ) is considered as a termination time for Al-
gorithm GOSSIP-AVE(P ) and minimization ofK(ε, P ) is
sought by proper choice ofP . Here we adopt the same
interpretation for comparison purposes. It should perhaps be
noted here that this is a fairly weak stopping criterion as
‖z(τK(ε,P )) − x̄1)‖∞/|x̄| may be much larger thanε. The
following theorem provides a lower bound forK(ε, P ) that
applies uniformly for allP on thed-dimensional lattice torus:

Theorem 4.1: [9, Theorem 8] LetG be d-dimensional
lattice torus with Nd nodes. Givenε > 0, K(ε, P ) =
Ω(Nd+2) for all admissibleP .

We note thatK(ε, P ) is a termination criterion in terms of
the transmitted messages in the network. Specifically,K(ε, P )
represents half of the aggregate number of messages transmit-
ted in the network before AlgorithmGOSSIP-AVE(P ) ter-
minates (to be precise, every time a clock ticks two messages
are transmitted in opposite directions on some edge). This
observation translates to a termination-time estimate since the
point process(τ1, τ2, τ3, · · · ) is Poisson with raten and it takes
roughly K(ε, P )/n time units to produce a total of2K(ε, P )
messages. Theorem 4.1 thus has the following corollary:

Corollary 4.1: On the d-dimensional lattice torus with
Nd nodes, both the time and the per-node message complex-
ities of GOSSIP-AVE(P ) areΩ(N2) for any admissibleP .

Remark 4.1: ([9, Lemma 15]) The two complexities of
GOSSIP-AVE(P ) scale asΘ(N2) when P reflects uniform
choice among neighbors in the torus.

In Figure 5 simulation results for the number of messages
transmitted per node under algorithmCOALESCENTare com-
pared to an analytical lower bound for those ofGOSSIP-AVE
obtained via [3, Theorem 3]. Although the average time
complexity of COALESCENTis larger, the per-node message
transmission rate underCOALESCENTtends to n−1 with
time and the overall effect is a substantial asymptotic gain
in message complexity with respect toGOSSIP-AVE.

Complexity of GOSSIP-AVE(P ) is inherently related to
the spectral gap of the stochastic matrixP [3], and thereby to
mixing times of random walks on the torus. Conclusions of the
present section are thus expected to hold for other distributed
algorithms such as those of [7], [8], [10] that are based on
powers of the incidence matrix of an underlying connectivity
graph, provided that a similar stopping criteria is adopted.

V. CONCLUSION

Main conclusions of the paper are summarized in Table I.
On the lattice torus the algorithms introduced here lead to
substantial gains in message complexity compared to gossip
algorithms. These gains entail some sacrifice in termination
time but the tradeoff appears favorable, particularly in lower
dimensions. The algorithms are parsimonious in message
transmission due to their sequential nature and thereby appear
suitable for energy-critical applications.
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