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Abstract— We consider distributed algorithms for data ag-
gregation in sensor networks. The algorithms are admitted via
message passing hence through pairwise computations. Under
these algorithms a transmitting node becomes inactive until it is
reactivated, yielding to substantial energy gains. We study the
per-node message and time complexities of the algorithms in
explicit graphs as a function of the network size. The obtained
complexities are compared to those of so-called gossip algorithms.
The results suggest trade-offs between the number of messages
transmitted and the computation times.

I. I NTRODUCTION

We consider distributed algorithms to compute a class
of functions that admit flexible decomposition in terms of
pairwise computations. These functions include in particular
maximum, product and weighted averages, which arise in
sensor applications. Rather than optimal centralized algorithms
we consider robust online algorithms that require only local
information at each sensor. The main theme of this work is
to quantify the number of message transmissions as proxy to
energy consumption, as well as the time required to compute
a given function.

Similar aspects of optimal centralized algorithms were
considered by [6], [7]. Decentralized local message-passing
algorithms have been previously proposed to compute several
functions considered in the present paper [1], [2], [4], [8], [12],
[13]. These algorithms are based on parallel asynchronous
transmissions of local estimates that lead to improved es-
timates at recipient nodes. Although they possess desirable
operational features, convergence of these algorithms relies in
essence on the mixing properties of the connectivity matrixof
communication graphG and thereby on substantial number of
message transmissions.

We consider two randomized sequential algorithms that lead
to striking gains in energy consumption while enjoying similar
operational advantages as previously studied algorithms.Un-
der the algorithms studied here, a transmitting node becomes
inactive and does not transmit further messages until it is
reactivated by a message reception from another node. An
active node generates messages at constant rate and sends each
message to a randomly selected neighbor. Algorithm SIMPLE-
WALK maintains a single active node, whose trajectory is
a random walk on the communication graph. Local process-
ing at each active node exploits the decomposability of the
considered functions to guarantee that the value of interest is

computed when each node becomes active at least once. Both
the time and the message complexities of this algorithm are
determined by the cover time [10] of the random walk. Under
algorithm COALESCENT all nodes are initially active and
the computation is completed when a single active remains
in the network. This latter algorithm is closely related with
coalescing random walk [5]. It is arguable that COALESCENT
expedites the computation while SIMPLE-WALK terminates
with fewer message transmissions. We quantify this tradeoff
on several topologies and provide a comparison with gossip
algorithms.

Section II gives the problem definition and Section III
formalizes the studied algorithms. Section IV studies the time
and message complexities of these algorithms on explicit
graphs and these results are compared to those of gossip
algorithms in Section V. The numerical results are presented
in Section VI with emphasis on geometric random graphs. The
paper concludes with final remarks in Section VII.

II. PROBLEM DEFINITION

Let Λ be a set and letf : Λ2 7→ Λ be an operation on
Λ. We shall assume thatf is commutative and associative,
and thatΛ has an identity element with respect tof . That
is, there existse ∈ Λ such thatf(λ, e) = λ for λ ∈ Λ. Let
F2 = f . For n ≥ 3 and given a permutation of{1, 2, · · · , n}
by π = {π1, π2, · · · , πn} define the mappingFn : Λn 7→ Λ
recursively by

Fn(λ1, λ2, · · · , λn) = f(λπ1
, Fn−1(λπ2

, λπ3
, · · · , λπn

)),
(1)

for λ1, λ2, · · · , λn ∈ Λ. Note that the mappingFn does not
depend onπ owing to the properties off .

Example 2.1: Let k ≥ 1 be an integer and letMk×k

be the set ofk-dimensional positive definite matrices. For
i = 1, 2, · · · , n let xi ∈ R

k and let wi ∈ Mk×k. The
weighted average(

∑n

i=1 wi)
−1

∑n

i=1 wixi can be expressed
in the form (1) by choosingΛ = {Rk ×Mk×k} ∪ {e} with
λi = (xi, wi), and by setting

f(λ, λ′) = ((w + w′)−1(wx + w′x′) , w + w′),

for λ = (x,w), λ′ = (x′, w′) ∈ Λ− {e}.
Consider a sensor network ofn nodes modelled by a graph

G = (V,E) where eachv ∈ V is a sensor node (and
|V | = n) and each(i, j) ∈ E represents a bidirectional



communication link between sensor nodes. We are concerned
with the distributed computation ofFn(λ1, λ2, · · · , λn) where
eachλi is known to distinct sensor nodes. We assumeG is
connected in order to avoid trivialities.

III. A LGORITHMS

We consider two different algorithms, namely
SIMPLE-WALK and COALESCENT based on well-studied
simple and coalescing random walks, respectively. A pseudo-
code for the algorithms is given in Figure 1. Under each
algorithm, each node maintains two variablesvalue and
status. Content of value takes values in the setΛ
and status is either ‘active’ or ‘idle’. We identify these
variables byvi(t) ∈ Λ and ξi(t) ∈ {0, 1} at nodei ∈ V at
time t ≥ 0; in particular

vi(t) = the content ofvalue of nodei at time t,

ξi(t) =

{

1 if status of nodei is ‘active’ at timet,
0 else.

Initially vi(0) = λi for each nodei. The initial valueξi(0)
(i.e. of status) depends on the particular algorithm in the
following fashion: UnderSIMPLE-WALK ξi(0) = 1 for
exactly one node, say nodeio, whereasξi(0) = 1 for all
nodes i under COALESCENT. Variablesvalue, status
evolve according to the same rules under both algorithms:
Namely, each node has an independent Poisson clock that
ticks at unit rate. When the local clock of nodei ticks, say at
time to, the node does not take any action unless it is active
(i.e. ξi(t

−
o ) = 1). Otherwise, ifξi(t

−
o ) = 1, the node chooses

a neighbor at random, sends its current valuevi(t
−
o ) to that

neighbor, and sets(vi(to), ξi(to)) = (e, 0). In particular it
becomes idle and ceases message transmission until it becomes
active again. The selected neighbor, say nodej, setsvj(to) =
f(vj(t

−
o ), vi(t

−
o )) and becomes active by settingξj(to) = 1.

In both algorithms an active node can be interpreted as
holding a token and this node passes it to a randomly chosen
neighbor at its clock tick changing. UnderCOALESCENT two
tokens coalesce into one when they occupy the same vertex
and act as one thereafter. UnderSINGLE-WALK there is only
one token and it passes through one node to another. An
illustration of the evolution of tokens ofCOALESCENT is
given in Figure 2.

Both algorithms compute the value ofFn(λ1, λ2, · · · , λn)
correctly regardless of the paths chosen until timet > 0 as
shown in the next proposition.

Proposition 3.1: Under both SIMPLE-WALK and
COALESCENT,

Fn(v1(t), v2(t), · · · , vn(t)) = Fn(λ1, λ2, · · · , λn), t > 0.

Let τS andτC be random times that are defined as follows:

τS = inf{t : each node becomes active by timet }

τC = inf{t :
∑

i

ξi(t) = 1}.

Variables:status, value.
Initialize : value ← λi;

SIMPLE− WALK : status←

{

‘active’ if i = io;
‘idle’ else.

COALESCENT : status← ‘active’.

ProcedureSend()
if( status == ‘active’ ) {

choose neighbor;
send(neighbor ,value);
value ← e;
status ← ‘idle’;
}

ProcedureReceive(message){
value ← f(value, message);
status ← ‘active’;
}

Fig. 1. Pseudo-code for algorithmsSIMPLE-WALK and COALESCENT
at nodei. Send() is activated by the local Poisson clock at the node, and
Receive() is activated by message reception from another node. The two
algorithms differ in the initialization of the variablestatus. That is, only
one node starts out active inSIMPLE-WALK whereas all nodes are initially
active inCOALESCENT.

Hence fort > τC (and for t > τS) such that for one single
nodei(t) ∈ V we have

vi(t) =

{

Fn(λ1, λ2, · · · , λn) if i = i(t)
e else

ξi(t) =

{

1 i = i(t)
0 else.

ThereforeτS and τC are stopping times forSIMPLE-WALK
and COALESCENT, respectively in the sense that
Fn(λ1, λ2, · · · , λn) is computed byτS (and τC) and is
known to a single active node in the network. Ifn is known
in advance a counter can be attached to the tokens and the
algorithms are terminated according to that counter.

IV. T IME AND MESSAGECOMPLEXITIES

In this section we study the messages and time complexities
of the considered algorithms. We begin with the definitions of
message and time complexities.

Definition 4.1: Average time complexity of algorithm
SIMPLE-WALK (resp. COALESCENT) refers to E[τS ]
(resp.E[τC ]).

In adopting a measure of messaging complexity, letηS(t)
and ηC(t) be the total number of transmitted messages in
the network by timet under algorithmsSIMPLE-WALK and
COALESCENT respectively:

Definition 4.2: Average per-node message complexity of
algorithm SIMPLE-WALK (resp. COALESCENT) refers to
n−1E[ηS(τS)] (resp.n−1E[ηC(τC)]).

For each timet defineξ(t) , (ξ1(t), ξ2(t), · · · , ξn(t)). Note
that (ξ(t) : t ≥ 0) is a time-homogeneous Markov process
under both algorithms. More precisely,(ξ(t) : t ≥ 0) is a
random walk onG underSIMPLE-WALK, and a coalescing
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Fig. 2. An illustration of evolution of active nodes in algorithm
COALESCENT. The circles in the figure represent nodes that are active at
some arbitrary timeto and arrows represent message transmissions afterto,
in the order indicated by their numbers. After message 1 the transmitting and
receiving nodes exchange their status, and the value of the transmitting node
passes onto the receiver. Message 2 results in one less active node in the
network the transmitter becomes idle whereas the receiver maintain its active
status. The number of active nodes do not change due to messages3 or 4,
but decrease again due to message 5.

random walk onG under COALESCENT. In particular the
average time complexity ofSIMPLE-WALK is the mean cover
time ofG. Average message complexities of the algorithms are
characterized by the following lemma:

Lemma 4.1:

E[ηS(τS)] = E

[

∫ τS

0

∑

i

ξi(t)dt

]

= E[τS ],

E[ηC(τC)] = E

[

∫ τC

0

∑

i

ξi(t)dt

]

.

Proof: Let Ft denote the sigma-field generated by
(|ξ(s)| : s ≤ t) and let (φ(t) : t ≥ 0) be a Poisson process
with unit rate. Note thatηS(t) has the same distribution as
φ(

∫ t

0
|ξ(s)|ds) since each carrier node transmits messages at

unit rate and idle nodes do not engage in message trans-
mission, and thus|ξ(t)| is the instantaneous rate of message
generation in the network at timet. In particular the process
(µ(t) : t ≥ 0) with

µ(t) = η(t)−

∫ t

0

|ξ(s)|ds

is a martingale adapted to{Ft}. Note also thatσ1 is an{Ft}
stopping time and it is almost surely finite andsupt≥0 |ξ(t)| ≤
Nd; hence it follows by the optional sampling theorem [14,
Theorem 2.2.13] thatE[µ(σ1)] = 0.

Recall that average time complexity ofSIMPLE-WALK is
the mean cover time ofG and the cover time results for explicit
graphs already obtained in the explicit graphs we consider.See
[11, Chapter 5] for the cover time results and by Lemma 4.1 it
is clear how the message complexity is related to average time

complexity for SIMPLE-WALK. Therefore we consider the
average messages and time complexities forCOALESCENT.

a) Completely connected graph: A completely connected
graph is a graph where each vertex has an edge with every
other vertex and the process’The Coalescent’ in [9] is exactly
COALESCENT on a completely connected graph. Therefore
the time and message complexity results are obtained from
[9].

b) Ring and d-dimensional torus: A d-dimensional torus
is a graph where all the vertices have exactly2d neighbors
and it can be formed by joining the facing boundaries of a
grid hence yielding a completely symmetric structure. A ring
is simply a 1 dimensional torus. Considern = Nd for a d
dimensional torus.

Let

sN =







N2 if d = 1
N2 log N if d = 2
Nd if d ≥ 3.

The following theorem gives the time complexity result for
COALESCENT.

Theorem 4.1: [5, Theorem 6]

0 < lim inf
N→∞

E[τC ]/sN = lim sup
N→∞

E[τC ]/sN < ∞.

Consider a typical sample path of the process(
∑

i ξi(t) :
t ≥ 1) in Figure 3, which is closely related to the number of
messages transmitted. It can be noticed that initial phasesthe
curve rapidly decreases however in the later phases the decay
is slower. Therefore the process entails two different phases.
In the initial phase there are plenty of nodes but due to high
coalescences their number diminish very quickly. In this initial
short phase there are high number of transmissions. In the
later longer phase, however, fewer messages are transmitted.
Therefore one needs to take into account the fact that these
phases behave very differently in order to find a complexity
result for the number of messages transmitted.

Let

mN =







N2 if d = 1
N2(log N)2 if d = 2
Nd log N if d ≥ 3.

The following theorem is an upper bound for the message
complexity.

Theorem 4.2: [3, Theorem 7]

lim sup
N→∞

E[ηC(τC)]/mN < ∞.

E[ηC(τC)] > E[τC ] due to
∑

i ξi(t) ≥ 1 for all t
therefore Theorem 4.1 is a lower bound on the growth rate
of E[ηC(τC)]. For a ring,i.e. 1-d torus, it is tight and it is off
by at most a factorlog N for d ≥ 2. Numerical simulations
suggest thatE[ηC(τC)] = ω(sN ) andE[ηC(τC)] = o(mN ).

V. COMPARISON WITH GOSSIPALGORITHMS

Recall Example 2.1. Letk = 1 so thatMk×k = R and
xi = 1 uniformly for all i = 1, 2, · · · , n. Thereforef simply
computes averages. In this section we would like to compare
the performance ofCOALESCENT andSIMPLE-WALK to that
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Fig. 3. A sample path of the number of active nodes under algorithm
COALESCENT. σk denotes the first time thatk active nodes remain in the
network. This trajectory has qualitatively different statistics for small and large
values oft/sN . The mean of the shaded area is the mean aggregate number
of transmitted messages in the network.

of so-called gossip algorithms, and obtain message and time
complexity results under the same settings in explicit graphs.

Gossip algorithms refer to distributed randomized algo-
rithms that are based on pairwise relaxations between ran-
domly chosen node pairs. In the present context a pairwise
relaxation refers to averaging of two values available at distinct
nodes. We next give a full description of this algorithm as
studied in [4]. In what follows a stochastic matrixP =
[Pij ]n×n is calledadmissible for G if Pij = 0 unless nodesi
and j are neighbors inG. The algorithm is parameterized by
suchP :

Algorithm GOSSIP-AVE(P ): Each nodei maintains a real
valued variable with initial valuezi(0) = xi. At the tick of a
local Poisson clock, say at timeto, nodei chooses a neighbor
j with respect to the distribution(Pij : j = 1, 2, · · · , n) and
both nodes update their internal variables aszi(to) = zj(to) =
(zi(t

−
o ) + zj(t

−
o ))/2.

Let x̄ denote the average ofx1, x2, · · · , xn, let z(t) denote
the vector(z1(t), z2(t), · · · , zn(t)) of node values at timet,
and 1 denote the vector of all 1s. Defineτk as thekth time
instant such that some local clock ticks and thereby triggers
messaging in the network. Forε > 0 let the deterministic
quantityK(ε, P ) be defined by

K(ε, P ) = sup
z(0)

inf

{

k : Pr

(

‖z(τk)− x̄1‖2
‖z(0)‖2

> ε

)

6 ε

}

.

In [4] K(ε, P ) is considered as a termination time for Al-
gorithm GOSSIP-AVE(P ) and minimization ofK(ε, P ) is
sought by proper choice ofP . Here we adopt the same
interpretation for comparison purposes. It should perhapsbe
noted here that this is a fairly weak stopping criterion as
‖z(τK(ε,P ))− x̄1)‖∞/|x̄| may be much larger thanε.

Since a gossip algorithm is in essence a matrix multiplica-
tion algorithm the convergence rate ofz(t) to the all average

COALESCENT SIMPLE-WALK GOSSIP
Com. connected Θ(log n) Θ(log n) Θ(1)

Ring Θ(n) Θ(n) Θ(n2)
Torus (d = 2) O((log n)2) Θ((log n)2) Θ(n)

Torus (d ≥ 3) O(log n) Θ(log n) Θ(n2/d)

(a)

COALESCENT SIMPLE-WALK GOSSIP
Com. connected Θ(n) Θ(n log n) Θ(1)

Ring Θ(n) Θ(n log n) Θ(n2)
Torus (d = 2) Θ(n log n) Θ(n(log n)2) Θ(n)

Torus (d ≥ 3) Θ(n) Θ(n log n) Θ(n2/d)

(b)

TABLE I

(A) MESSAGE AND(B) TIME COMPLEXITIES FOR THREE TOPOLOGIES

WITH n NODES.

vector must be some explicit function of the second greatest
eigenvalue ofP . It is indeed true as the next proposition states.

Proposition 5.1: [4, Theorem 3] LetP be a stochastic
matrix that completely characterizes a gossip algorithm,n
number of nodes in the network andW = I − D/2n +
(P + PT )/2n where D is a diagonal matrix with entries
Di =

∑n

j=1(Pij +Pji). Let λ2(W ) denote the second greatest
eigenvalue ofW . Then for any fixedε > 0

0.5 log ε−1

log λ2(W )−1
≤ K(ε, P ) ≤

3 log ε−1

log λ2(W )−1
.

Hence onceλ2(W ) is computed as a function ofn one can
obtain the time complexity results for gossip algorithms. Per
node message complexity results are in the same order as the
time complexity results.

c) Completely connected graph: Let PC denote the
stochastic matrix that characterizes the gossip algorithmon
a completely connected graph. IfPC is chosen such that
each node chooses its neighbor with equal probability then
PC(i, j) = 1/(n− 1) if i 6= j and 0 otherwise. Therefore

W = (1−
1

n
−

1

n(n− 1)
)I−

1

n(n− 1)
1

yielding λ2(W ) = (1− 1
n
− 1

n(n−1) ) henceK(ε, P ) = Θ(n).
d) Ring and d-dimensional torus: The following theorem

provides a lower bound forK(ε, P ) that applies uniformly for
all P on thed-dimensional lattice torus:

Theorem 5.1: [3, Theorem 8] LetG be d-dimensional
lattice torus with Nd nodes. Givenε > 0, K(ε, P ) =
Ω(Nd+2) for all admissibleP .

The next theorem summarizes the time and message com-
plexity results obtained for all algorithms.

Theorem 5.2: Time and message complexity results
of algorithms SIMPLE-WALK, COALESCENT and
GOSSIP-AVE are summarized in Table I.

VI. N UMERICAL RESULTS

In this section we numerically verify the analytical results
of Table I on a2−d torus as an example and obtain numerical
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Fig. 4. Average run times and number of messages per node on the 2-dimensional torus withn nodes. The solid curve represents simulation results for
COALESCENT, the dashed curve forSIMPLE-WALK whereas the dotted curve represent lower bounds forGOSSIP-AVE(P ) based on a lower bound for
K(ε, P ). Note also that exact value ofFn(λ1, λ2, · · · , λn) is obtained at the termination ofCOALESCENT or SIMPLE-WALK whereas no such claim can
be made forGOSSIP-AVE(P ).
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Fig. 5. Average run times and number of messages per node on geometric random graphs.

results for average run times and average number of messages
transmitted on geometric random graphs.

Geometric random graphs have received much attention
recently in wireless network community due to their success
to model wireless networks. See for example [15] and [4].
Therefore we find the numerical analysis of the time and
message complexities of the algorithms on geometric random
graphs useful.

Definition 6.1: A geometric random graph ind ≥ 1
dimensions withn nodes and radiusr(n), denote byΓ =
(VΓ, EΓ), is a graph where nodes are distributed in a unit

hypercube and(i, j) ∈ EΓ if and only if the Euclidian distance
betweeni and j is smaller thanr(n).

Specifically we have chosen a 2 dimensional geometric
random graph ofn nodes distributed in a unit square, with
radius

√

2 log n/n. Hence the graph has good connectivity
and interference is minimized ([15], [16]). However in order
to avoid trivialities, we considered only connected geometric
random graphs and ignored the disconnected ones in our
simulations.

In order to make a fair comparison ofGOSSIP-AVE with



COALESCENT andSIMPLE-WALK we use

K2(ε, z(0)) = inf

{

k :
‖z(τk)− z̄1‖2
‖z(0)‖2

6 ε

}

as a stopping criterion forGOSSIP-AVE.
The numerical results of average number of messages and

run times on 2-D torus and geometric random graphs are in
Figures 4 and 5, respecctively.

VII. C ONCLUSION

We have studied the time and message of complexities of
two algorithms, namelySIMPLE-WALK andCOALESCENT,
and have compared our results to gossip algorithms. The
results suggest a trade-off between run times and trans-
mitted messages. For example for a 2 dimensional torus
running COALESCENT over gossip algorithms provides
O(n(log n)−2) gain in terms of per-node message transmis-
sions for a loss ofΘ(log n) in run time. Therefore the sensor
network designer may choose to employCOALESCENT in
order to save energy.
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