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Abstract—We consider distributed algorithms for data ag- computed when each node becomes active at least once. Both
gregation in sensor networks. The algorithms are admitted via the time and the message complexities of this algorithm are
message passing hence through pairwise computations. Underyetermined by the cover time [10] of the random walk. Under

these algorithms a transmitting node becomes inactive until it is . - .
reactivated, yielding to substantial energy gains. We study the algorithm COALESCENT all nodes are initially active and

per-node message and time complexities of the algorithms in the computation is completed when a single active remains
explicit graphs as a function of the network size. The obtained in the network. This latter algorithm is closely related hwit

complexities are compared to those of so-called gossip algorithms. coalescing random walk [5]. It is arguable that COALESCENT
The results suggest trade-offs between the number of message oy e ites the computation while SIMPLE-WALK terminates
transmitted and the computation times. . . . .

with fewer message transmissions. We quantify this trddeof
on several topologies and provide a comparison with gossip
algorithms.

We consider distributed algorithms to compute a classSection Il gives the problem definition and Section IlI
of functions that admit flexible decomposition in terms oformalizes the studied algorithms. Section IV studies theet
pairwise computations. These functions include in paldicu and message complexities of these algorithms on explicit
maximum, product and weighted averages, which arise dghaphs and these results are compared to those of gossip
sensor applications. Rather than optimal centralizedréihgos  algorithms in Section V. The numerical results are preskente
we consider robust online algorithms that require only llocin Section VI with emphasis on geometric random graphs. The
information at each sensor. The main theme of this work gper concludes with final remarks in Section VII.
to quantify the number of message transmissions as proxy to
energy consumption, as well as the time required to compute Il. PROBLEM DEFINITION
a given function. Let A be a set and lef : A> — A be an operation on

Similar aspects of optimal centralized algorithms werg. We shall assume that is commutative and associative,
considered by [6], [7]. Decentralized local message-p@ssiand thatA has an identity element with respect fo That
algorithms have been previously proposed to compute devega there exists: € A such thatf(\,e) = A for A € A. Let
functions considered in the present paper [1], [2], [4], [BR], F, = f. Forn > 3 and given a permutation dfl,2,--- ,n}

[13]. These algorithms are based on parallel asynchronasys = = {r,,m,,--- ,7,} define the mapping’, : A” — A
transmissions of local estimates that lead to improved egcursively by
timates at recipient nodes. Although they possess desirabl

I. INTRODUCTION

operational features, convergence of these algorithniessriel ~ Fn(A, Az, An) = f(Any, Fno1(Amys Amas o5 Axy ),
essence on the mixing properties of the connectivity matfix ) )
communication grapli’ and thereby on substantial number ofof A1, A2, -+, A € A. Note that the mapping’, does not
message transmissions. depend onr owing to the properties of.

We consider two randomized sequential algorithms that lead EXample 2.1: Let £ > 1 be an integer and Ie_M’“X’“
to striking gains in energy consumption while enjoying mi be the set ofk-dimensional positive definite matrices. For
operational advantages as previously studied algorittuns. ¢ = 1,2,---,n let Ti € R agd letw; € M"**. The
der the algorithms studied here, a transmitting node besonyéeighted averagey ;”, w_i)_l 2.y wiz; can be expressed
inactive and does not transmit further messages until it I[§ the form (1) by choosing\ = {RE > M™MF} U {e} with
reactivated by a message reception from another node. An— (%i,wi), and by setting
active node generates messages at_constant ratt_a and seimds ea FOON) = (0 + ') Ywz +w'z') | w+w'),
message to a randomly selected neighbor. Algorithm SIMPLE-

WALK maintains a single active node, whose trajectory ifor A\ = (z,w), N = (2/,w’) € A — {e}.

a random walk on the communication graph. Local process-Consider a sensor network afnodes modelled by a graph
ing at each active node exploits the decomposability of tiie = (V,E) where eachv € V is a sensor node (and
considered functions to guarantee that the value of intéses|V| = n) and each(i,j) € FE represents a bidirectional



Variables:st at us, val ue.

communication link between sensor nodes. We are concerned ' .. "
Initialize : val ue <« \;;

with the distributed computation df,, (A1, A2, -+, A,) where
each)\; is known to distinct sensor nodes. We assumés SIMPLE — WALK : status { active’ if i =i,;

connected in order to avoid trivialities. ‘idle’ else.
COALESCENT : status < ‘active’.
I11. ALGORITHMS ProcedureSend)
We consider two different algorithms, namely  if( status == ‘active’) {
S| MPLE- WALK and COALESCENT based on well-studied choose neighbor;
simple and coalescing random walks, respectively. A pseudo  send(neighbor yal ue);
code for the algorithms is given in Figure 1. Under each val ue « ¢;
algorithm, each node maintains two variableal ue and status « ‘idle’;
st at us. Content of val ue takes values in the sei }
and st at us is either‘active’ or ‘idle’. We identify these ProcedureReceivémessage)
variables byv;(t) € A and;(t) € {0,1} at nodei € V' at val ue — f(value, messagg
time ¢ > 0; in particular st at us «— ‘active’:
v;(t) = the content ofval ue of node: at timet, _ J _
. e e e . Fig. 1.  Pseudo-code for algorithni MPLE- WALK and COALESCENT
(1) = { 1 if status of nodei is ‘active’ at timet, a nodei. Send() is activated by the local Poisson clock at the nodé, a
0 else. Receive() is activated by message reception from anothee.ndde two

algorithms differ in the initialization of the variablet at us. That is, only

InitiaIIy vi(O) — ), for each node. The initial valuegi(o) ggteivgoige startEsSgEt’\;ctlve Bl MPLE- WALK whereas all nodes are initially

(i.e. of st at us) depends on the particular algorithm in the

following fashion: UnderSI MPLE- WALK &;(0) = 1 for

exactly one node, say nodg, whereas¢;(0) = 1 for all Hence fort > 7 (and fort > 7g) such that for one single
nodesi under COALESCENT. Variablesval ue, status nodei(t) € V we have

evolve according to the same rules under both algorithms: e

Namely, each node has an independent Poisson clock that  v;(t) :{ FulAuAg, o An) T8 = i(E)

: . o e else

ticks at unit rate. When the local clock of noddicks, say at

time ¢,, the node does not take any action unless it is active &i(t) = { 1 i=1i(t)

(i.e. &(t,) = 1). Otherwise, if¢;(t;) = 1, the node chooses S 0 else.

a neighbor at random, sends its current valyg_ ) to that Thereforers and 7 are stopping times fosl MPLE- WALK

neighbor, and set¢vi(f,),&i(t,)) = (e,0). In particular it 4 coa ESCENT, respectively in  the sense that
becomes idle and ceases message transmission until it becopn (A Ass -, An) is computed byrs (and 7¢) and is

active again. The selected neighbor, say ngdeets; (f,) = | nown to a single active node in the network.nifis known

f(vj(t;),vi(t;)) and becomes active by settigg(t,) = 1. in advance a counter can be attached to the tokens and the

In both algorithms an active node can be interpreted ggyorithms are terminated according to that counter.
holding a token and this node passes it to a randomly chosen

neighbor at its clock tick changing. UndeDALESCENT two IV. TIME AND MESSAGECOMPLEXITIES

tokens coalesce into one when they occupy the same verten this section we study the messages and time complexities
and act as one thereafter. Un@®rNGLE- WALK there is only of the considered algorithms. We begin with the definitiohs o
one token and it passes through one node to another. Aessage and time complexities.

illustration of the evolution of tokens oCOALESCENT is Definition 4.1: Average time complexity of algorithm
given in Figure 2. S| MPLE- WALK  (resp. COALESCENT) refers to E[rg]
Both algorithms compute the value &f,(A\1, X2, -+, \,)  (resp. E[rc]).
correctly regardless of the paths chosen until time 0 as In adopting a measure of messaging complexityleft)
shown in the next proposition. and nc(t) be the total number of transmitted messages in
Proposition 3.1: Under both SI MPLE-WALK and the network by time under algorithmsSI MPLE- WALK and
COALESCENT, COALESCENT respectively:

Definition 4.2: Average per-node message complexity of
Fo(vi(t),va(t), -+ ,on(t)) = Fu(A1, Aa, - -+, An), t>0. algorithm SI MPLE- WALK (resp. COALESCENT) refers to
Let 75 and7¢ be random times that are defined as follows: ! E[ns(7s)] (resp.n~ ! E[nc(m¢))).
For each time define¢(t) = (&1(t), & (t), - -+, €,(t)). Note
7s = inf{t: each node becomes active by timhé that ({(¢) : t > 0) is a time-homogeneous Markov process
e = inf{t: Z&(t) =1} under both algorithms. More preciseli(¢) : ¢ > 0) is a
p random walk onG underSI MPLE- WALK, and a coalescing



complexity for SI MPLE- WALK. Therefore we consider the
average messages and time complexitiesSJOAL ESCENT.

a) Completely connected graph: A completely connected
graph is a graph where each vertex has an edge with every
other vertex and the proceSEkhe Coalescent’ in [9] is exactly
COALESCENT on a completely connected graph. Therefore
I the time and message complexity results are obtained from

[9].

b) Ring and d-dimensional torus: A d-dimensional torus

is a graph where all the vertices have exa&ty neighbors
and it can be formed by joining the facing boundaries of a
grid hence yielding a completely symmetric structure. Agrin
is simply a 1 dimensional torus. Consider= N¢ for a d
dimensional torus.

Fig. 2. An illustration of evolution of active nodes in algbm Let

COALESCENT. The circles in the figure represent nodes that are active at N2 ifd=1
some arbitrary time, and arrows represent message transmissions tafter _ 2 i _
in the order indicated by their numbers. After message 1 tmsnéting and SN = Nd log N !f d=2
receiving nodes exchange their status, and the value ofdherhitting node N if d> 3.

passes onto the receiver. Message 2 results in one lese adie in the . . . .

network the transmitter becomes idle whereas the receivertanais active 1 he following theorem gives the time complexity result for

status. The number of active nodes do not change due to mesdamges, COALESCENT.

but decrease again due to message 5. Theorem 4.1: [5, Theorem 6]
0 < lgninfE[TC]/sN = limsup El[r¢]|/sy < 0.

random v_valk onG un_derCOALESCENT. In particular the  ~gnsider a typical sample pa’ﬁooof the procéss, &(t) :
average time complexity &8l MPLE- WALK is the mean cover ; - 1y iy Figure 3, which is closely related to the number of

time of G. Average message complexities of the algorithms afgessages transmitted. It can be noticed that initial phémes
characterized by the following lemma: curve rapidly decreases however in the later phases theg deca

Lemma 4.1: is slower. Therefore the process entails two different phas

s In the initial phase there are plenty of nodes but due to high
Ens(ts)] = FE / Zgi(t)dt] = FElrs], coalescences their number diminish very quickly. In thigah

0 short phase there are high number of transmissions. In the

TC later longer phase, however, fewer messages are trangmitte
Elnc(rc)] = E A Z&;(t)dt] . Therefore one needs to take into account the fact that these

phases behave very differently in order to find a complexity

. i result for the number of messages transmitted.
Proof: Let F, denote the sigma-field generated by Let

(I€(s)] : s < t) and let(¢(t) : t > 0) be a Poisson process N2 if d=1
with unit rate. Note that)s(t) has the same distribution as my =4 N2?(logN)? ifd=2
qS(fg |€(s)|ds) since each carrier node transmits messages at Ndlog N if d>3.

unit rate and idie nodes do not engage in message tra‘iﬁe following theorem is an upper bound for the message
mission, and thu${(t)| is the instantaneous rate of messag 9 PP 9

?i(rlt)er-a:i(;n()i)nv\t,?tﬁ network at time In particular the process Com[)l_lﬁ)e(g{ém 4.2: [3, Theorem 7]

limsup E[nc(tc)]/mn < oo.

t
u(e) = (o)~ [ le(s)lds Eino(re)] 2 Bire] due 10 Y,6() > 1 for al ¢

0 therefore Theorem 4.1 is a lower bound on the growth rate
is a martingale adapted g%, }. Note also that, is an{F;} of E[nc(7¢)]. For a ring,i.e. 1d torus, it is tight and it is off
stopping time and it is almost surely finite antb, . [£(¢)| < by at most a factotog N for d > 2. Numerical simulations
N<; hence it follows by the optional sampling theorem [14suggest thal?[nc(1¢)] = w(sy) and E[nc (o)) = o(my).
Theorem 2.2.13] thaF[u(01)] = 0. |

Recall that average time complexity 6f MPLE- WALK is V. COMPARISON WITH GOSSIPALGORITHMS

the mean cover time a and the cover time results for explicit Recall Example 2.1. Let = 1 so thatM*** = R and
graphs already obtained in the explicit graphs we consiks. x; = 1 uniformly for all i = 1,2,--- ,n. Thereforef simply
[11, Chapter 5] for the cover time results and by Lemma 4.1dbmputes averages. In this section we would like to compare
is clear how the message complexity is related to average tithe performance d£QALESCENT andSI MPLE- WALK to that



| COALESCENT | SIMPLE-WALK | GOSSIP

Number of active nodes z (1)

Com. connected O(logn) O(logn) o(1)
Ring o(n) o(n) O(n?)

Torus @ = 2) O((logn)?) O((logn)?) O(n)

Torus @ > 3) O(logn) O(logn) O(n?/4)

@

| COALESCENT | SIMPLE-WALK | GOSSIP

Com. connected O(n) O(nlogn) o(1)
Ring O(n) O(nlogn) O(n?)
Torus @ = 2) O(nlogn) O(n(logn)?) O(n)
Torus ¢ > 3) O(n) O(nlogn) O(n?/4)
, (b)
¢ TABLE |

(A) MESSAGE AND(B) TIME COMPLEXITIES FOR THREE TOPOLOGIES

: ) ) WITH n NODES.
Fig. 3. A sample path of the number of active nodes under algorit

COALESCENT. o denotes the first time thdt active nodes remain in the
network. This trajectory has qualitatively different &tts for small and large
values oft/sx. The mean of the shaded area is the mean aggregate number o )
of transmitted messages in the network. vector must be some explicit function of the second greatest
eigenvalue ofP. It is indeed true as the next proposition states.
Proposition 5.1: [4, Theorem 3] LetP be a stochastic
of so-called gossip algorithms, and obtain message and timatrix that completely characterizes a gossip algorithim,
complexity results under the same settings in explicit Gsap number of nodes in the network arl = I — D/2n +
Gossip algorithms refer to distributed randomized algd + P7)/2n where D is a diagonal matrix with entries
rithms that are based on pairwise relaxations between rdp; = Z;;l(Pij +Pj;). Let \y(1¥) denote the second greatest
domly chosen node pairs. In the present context a pairwisigenvalue ofit’. Then for any fixed > 0

relaxation refers to averaging of two values available sttt 0.51og e 3log e
nodes. We next give a full description of this algorithm as W < K(e,P) < W-
studied in [4]. In what follows a stochastic matrR = pence once\;(W) is computed as a function of one can

[Pijlnxn is calledadmissible for & if P;; = 0 unless node$  piain the time complexity results for gossip algorithmer P
andj are neighbors ir;. The algorithm is parameterized byngge message complexity results are in the same order as the
such P: time complexity results.

Algorithm GOSSI P- AVE(P): Each node maintains a real c) Completely connected graph: Let P~ denote the
valued variable with initial value;(0) = ;. At the tick of a gtochastic matrix that characterizes the gossip algorittm
local Poisson clock, say at timg, node: chooses a neighbor g completely connected graph. F- is chosen such that

J with respect to the distributiof; : j = 1,2,---,n) and each node chooses its neighbor with equal probability then
both nodes update their internal variablesds,) = z;(t,) = Pc(i,j) =1/(n—1) if i # j and O otherwise. Therefore
(Zi(t;)+zj(to_))/2' 1 1 1

Let z denote the average af , xo, - - - ,z,, let z(¢) denote W=>1--- - 1
the vector(z1(t), 22(t), - - , za(t)) of node values at time, noon(-1)" nn-1)
and 1 denote the vector of all 1s. Defing as thekth time yielding Ao(W) = (1 -+ — ﬁ) henceK (e, P) = O(n).

instant such that some local clock ticks and thereby trigger d) Ring and d-dimensional torus: The following theorem
messaging in the network. Fer > 0 let the deterministic provides a lower bound foK (¢, P) that applies uniformly for
quantity K (¢, P) be defined by all P on thed-dimensional lattice torus:
~ Theorem 5.1: [3, Theorem 8] LetG be d-dimensional
K(e, P) Supinf{k . Py (|Z(Tk) — 71, > 5) < 5}. lattice torus with N nodes. Givene > 0, K(e,P) =
2(0) 12(0)]l, Q(N4*2) for all admissibleP.

In [4] K (e, P) is considered as a te_rmi.nation time for Al'plexity results obtained for all algorithms.
gorithm GOSSI P- AVE(P) and minimization ofK(e, P) is Theorem 5.2: Time and message complexity results

sought by proper choice of’. Here we adopt the same,; algorithms S| MPLE- WALK, COALESCENT  and
interpretation for comparison purposes. It should pert#ds ggg| p. AVE are summarized in’ Table 1.
noted here that this is a fairly weak stopping criterion as

|2(Tx(c,py) — 71) |0/ |Z| May be much larger than VI. NUMERICAL RESULTS
Since a gossip algorithm is in essence a matrix multiplica- In this section we numerically verify the analytical result
tion algorithm the convergence rate gft) to the all average of Table | on a2 —d torus as an example and obtain numerical

The next theorem summarizes the time and message com-
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Fig. 4. Average run times and number of messages per node ondhmee®sional torus withn nodes. The solid curve represents simulation results for
COALESCENT, the dashed curve foBl MPLE- WALK whereas the dotted curve represent lower bound<3E8SI P- AVE(P) based on a lower bound for
K(e, P). Note also that exact value @, (A1, A2, -, An) is obtained at the termination @OALESCENT or SI MPLE- WALK whereas no such claim can
be made forGOSSI P- AVE(P).
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Fig. 5. Average run times and number of messages per node on georaetiom graphs.

results for average run times and average number of messdugsercube andi, j) € Er if and only if the Euclidian distance
transmitted on geometric random graphs. between: andj is smaller than-(n).

Geometric random graphs have received much attentio o . . .
S . : pecifically we have chosen a 2 dimensional geometric
recently in wireless network community due to their success o . . .
ndom graph ofx nodes distributed in a unit square, with

to model wireless networks. See for example [15] and [4a‘1dius \/2logn/n. Hence the graph has good connectivity

Therefore we find the numerical analysis of the time an . Lo )

. . . and interference is minimized ([15], [16]). However in orde
message complexities of the algorithms on geometric ranOI?(r)“avoid trivialities, we considered only connected geoinet
graphs useful. '

L . . random graphs and ignored the disconnected ones in our
Definition 6.1: A geometric random graph i@ > 1

simulations.
dimensions withn nodes and radiug(n), denote by’ =
(Vr, Er), is a graph where nodes are distributed in a unit In order to make a fair comparison @GOSSI P- AVE with



COALESCENT and SI MPLE- WALK we use

. o l=() = =1
Ks(e,2(0)) = 1nf{k : W”z? < 5}

as a stopping criterion foBOSSI P- AVE.

The numerical results of average number of messages and
run times on 2-D torus and geometric random graphs are in
Figures 4 and 5, respecctively.

VIl. CONCLUSION

[15] P. Gupta and P. Kumar, The capacity of wireless netwdeKSE Trans.
on Information Theory, 46(2):388-404, March 2000.

[16] A. E. Gamal, J. Mamman, B. Prabhakar and D. Shah, Througigay
trade-off in wireless networks, INFOCOM 2004. 2004.

We have studied the time and message of complexities of
two algorithms, namelsl MPLE- WALK and COALESCENT,
and have compared our results to gossip algorithms. The
results suggest a trade-off between run times and trans-
mitted messages. For example for a 2 dimensional torus

running COALESCENT over gossip algorithms provides

O(n(logn)~2) gain in terms of per-node message transmis-
sions for a loss 0B (logn) in run time. Therefore the sensor
network designer may choose to empl@PALESCENT in
order to save energy.
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