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Abstract. We consider in-network processing via local message passing.
The considered setting involves a set of sensors each of which can com-
municate with a subset of other sensors. There is no designated fusion
center; instead sensors exchange messages on the associated communi-
cation graph to obtain a global estimate. We propose an asynchronous
distributed algorithm based on local fusion between neighboring sensors.
The algorithm differs from other related schemes such as gossip algo-
rithms in that after each local fusion one of the associated sensors ceases
its activity until it is re-activated by reception of messages from a neigh-
boring sensor. This leads to substantial gains in energy expenditure over
existing local ad-hoc messaging algorithms such as gossip and belief prop-
agation algorithms. Our results are general and we focus on some explicit
graphs, namely geometric random graphs, which have been successfully
used to model wireless networks, and d-dimensional lattice torus with
n nodes, which behave exactly like mesh networks as n gets large. We
quantify the time, message and energy scaling of the algorithm, where
the analysis is built upon the coalescing random walks. In particular, for
the planar torus the completion time of the algorithm is @(nlogn) and
energy requirement per sensor node is O((log n)?) and for 3-d torus these
quantities are O(n) and O(logn) respectively. The energy requirement
of the algorithm is thus scalable, and interestingly there appears little
practical incentive to consider higher dimensions. Furthermore, for the
planar torus the algorithm exhibits a very favorable tradeoff relative to
gossip algorithms whose time and energy requirements are shown here
to be £2(n). Also, the proposed algorithm can be generalized to robus-
tify against packet losses and permanent node failures without entailing
significant energy overhead. The paper concludes with numerical results.

1 Introduction

Wireless sensors bear a vast potential as they can be networked to form amor-
phous systems that are far more capable than their parts. This potential is
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accompanied by substantial technical challenges, namely such systems call for
distributed models of operation that comply with requirements that arise due to
energy limitations of sensors, packet losses along wireless links, sensor failures,
and possibly uncontrollable network topologies.

In this paper we study ad-hoc distributed computation of a wide class of func-
tions of network-wide measurements. The topic of distributed computation has
received significant interest recently in the context of sensor networks (see [17, 8,
5,13, 14, 15,11, 9, 12, 2, 3, 4, 1] and included references). Distributed computa-
tion and optimization arises in a number of different applications ranging from
signal processing such as distributed localization/detection/estimation/tracking
to load balancing and self-organization in communication networks [8,[7]. Pre-
viously proposed techniques can be broadly categorized into two groups: The
fusion-centric approach (see [I7,[I1,9] and included references) assumes that each
sensor has a communication link to a data fusion center and each sensor node
computes a local decision, which is then communicated to the fusion center. The
fusion center then forms a global estimate of the desired function based on local
decisions. The ad-hoc approach, on the other hand, involves no designated fusion
center but focuses on establishing consensus within the network via local mes-
sage exchanges. This approach is appears to be more suitable to address energy
issues in large-scale networks and also appears to have robustness advantages.
This is because: (a) it requires much less energy to communicate to neighboring
sensors; (b) in-network processing through locally fusing information results in
compression; (c¢) no fusion center implies no single point of failure; (d) they are
well suited for asynchronous operation and hence robust to packet losses and
node failures. Specifically, consider the so called gossip algorithm [5] for com-
puting the average of all the sensor observations. Gossip algorithms accomplish
this task by randomly choosing two neighboring sensor nodes at each time and
replacing their current values by their average. It turns out that this process
over time converges to the average of all sensor values at all the sensors, i.e., all
the sensors achieve a consensus. Such consensus algorithms have been recently
explored in other contexts such as detection [2[3] and control [13].

Nevertheless, these algorithms have fundamental disadvantages from an en-
ergy efficiency perspective. In particular, if n nodes are uniformly distributed in
a given area and Fj is the average communication energy-per-message required
to communicate information to a neighboring node, then the energy-per-node
required to achieve consensus scales as {2(nEj), which can be significant for a
large sensor network. The fundamental reason is that energy efficiency resulting
from in-network processing is offset by ad-hoc message passing that results in
redundant computations, i.e., the same set (or largely similar set) of nodes re-
peatedly fuse their information at different points in time. In a related problem
involving distributed detection, the significant energy scaling can be attributed
to the loopy nature of the network where messages sent from one node repeatedly
arrive at the node at different points in time. In order to ensure that no informa-
tion from any node is forgotten, each node must re-inject their messages in to the
network to reinforce their information [3]. At a fundamental level the significant
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scaling of energy arises due to the slow mixing rate of large networks, which can
be attributed to rather large second eigenvalues of certain connectivity matrices
associated with the underlying communication graph. An immediate solution to
reduce such redundant computations is to design a communication tree so that
message from the leaf nodes arrive at accumulation points (or clusterheads),
which fuse the information and forward this information to a parent node. How-
ever, such a construction requires centralized planning and is inconsistent with
the requirements of ad-hoc sensor network operation, where packet losses and
node failures are common.

To address these issues we present a novel distributed computing approach
in this paper, where not only is the ad-hoc network operation preserved but
where the energy-related disadvantages of the existing local message passing re-
sulting from repeated redundant computations is also minimized. The emphasis
of the paper is on two important but conflicting figures of merit for wireless
sensor networks, namely the time and the energy required to complete the com-
putation. We introduce an asynchronous distributed algorithm that is based on
autonomous pairwise communications between pairs of neighboring sensors in
the underlying communication topology. The algorithm forces one of the com-
municating nodes to cease transmitting new messages until it is re-activated due
to reception of a message from a neighboring node. This results in exponential
energy gains compared other similar schemes. We adopt messaging complexity
as a proxy for energy requirement (as described earlier) and quantify the trade-
off between this quantity and the completion time. For the d-dimensional lattice
torus with n sensors, we show that the completion time is @(n(logn)®) and en-
ergy requirement per sensor node is O((logn)**!) where o = 1 for d = 2 and
a = 0 for d > 3. The algorithm thus has scalable energy requirement, further-
more its performance is almost insensitive to changes in the network connectivity
represented by different values of d > 2, hinting at the possibility of predictable
performance over mesh topologies. Section Bl focuses on averaging of sensor mea-
surements as a case study for comparison with gossip algorithms. We show that
both the time and the per-node energy requirement of the gossip algorithm of [5]
are §2(n) on the 2-dimensional torus with n nodes, irrespective of the choice of
the parameters of this algorithm. The algorithm introduced in the present paper
thus exhibits a very favorable trade-off between the two performance measures
for d = 2, but the gains in energy requirements come at the expense of more
substantial compromise in the completion time for larger d.

With regard to other important practical considerations, the algorithm is ro-
bust against packet losses provided that reliable link-layer protocols are employed
in wireless exchanges. The algorithm is also resilient against permanent node fail-
ures, furthermore the tolerable number of node failures can be provisioned and the
energy requirement of the algorithm increases linearly with this number.

The rest of the paper is organized as follows. The distributed computation
problem is formulated in Section [2] and the proposed algorithm is specified in
Section Bl Sectiondis devoted to the analysis of this algorithm on d-dimensional
tori for d > 1. A comparative study with gossip algorithms, specifically on geo-
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metric random graphs, is given in Section B, and the paper concludes with final
remarks in Section

2 Problem Definition

Let A be a set that is closed under operation f. We shall assume that f is
commutative and associative, and that A has an identity element with respect
to f, that is there exists e € A such that f(X,e) = A for A € A. Let F» = f. Given
n > 3 and a permutation 7 of {1,2,---,n} define the mapping F,, : A" — A
recursively by

Fn(>\17 )‘27 T 7)‘71) = f()‘ﬂ(l)a Fn71(>\7r(2)7>\7r(3)7 T 7)‘7r(n)))7 (]-)

for A1, A2, -+, A, € A. The notational dependence on the permutation = is
dropped here because the mapping F,, does not depend on 7 due to the com-
mutativity and associativity of f.

We will be concerned with distributed computation of F, (A1, A2, ,A,) in
cases when each )\; is known to a distinct agent. In typical applications that
motivate this work such an agent represents one of n sensors involved in a sta-
tistical inferencing procedure, \; represents a measurement taken by sensor ¢ or a
function thereof that reflects a local estimate, and F), (A1, A2, -+, Ay,) represents
a global estimate or a sufficient statistic of the measurements. For example, in
the simplistic case of computing the maximum value of the sensor measurements
one may take A = RU{—o00}, e = —o0, and f(A1, A2) = max(A1, A2). Represen-
tation of weighted vector averages, which are of interest in finding least-squares
estimates, is illustrated in the following example:

Example 1. Let k& > 1 be an integer and let M*** be the set of k-dimensional
positive definite matrices. For i = 1,2,--- ,n let 2; € R¥ and let w; € MF*F,
The weighted average (Y, w;)~! > | w;x; can be expressed in the form (I
by choosing A = {R* x M*¥**} U {e} with \; = (x;,w;), and by setting

FOLN) = (w+w) YN wz +w'2’), w+uw'),
for A = (z,w), N = (2/,w') € A— {e}.

We consider computation of F, (A1, A2, -+, A,) under communication
constraints that are specified by an undirected graph G = (V, E') where each node
in V denotes a sensor (hence |V| = n) and an edge (4, j) € E indicates a bidirec-
tional communication link between sensors ¢ and j. To avoid trivialities we shall
assume that G is connected. Note that since F;, admits flexible decomposition in
terms of the atomic operation f, there exist a sequence (eq, ea, - - - , e,—1) of distinct
edges in G such that F,, (A1, A2, -, A,) can be computed by sequentially execut-
ing f on the values at the two ends of each link in the given order. Furthermore the
edgeset {e1,ea, -, e,_1} forms a spanning tree for G, and some of the aforemen-
tioned operations can be executed in parallel so that the overall computation can
be completed in time proportional to the diameter of G. Rather than such central-
ized algorithms, our focus here is on decentralized algorithms that require neither
global information about G nor network-wide synchronization.
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3 Information Coalescence

Consider the following distributed, asynchronous algorithm which requires each
sensor to be aware of only the sensors that it can communicate directly:

Algorithm COALESCENT(f, A, G): Each sensor maintains a variable value which
is an element of the set A, and a variable status which is either ‘carrier’or ‘idle’.
We denote the value of sensor ¢ € V' at time ¢t > 0 by v;(¢), and indicate the
status of the sensor via &;(t) defined by

&i(t) = 1 if status of sensor 7 is ‘carrier’ at time ¢,
710 else.

Initially (v;(0),&;(0)) = (\;, 1) and these variables evolve as follows: Each sensor
has an independent Poisson clock that ticks at unit rate. When the local clock
of sensor i ticks, say at time ¢,, the sensor does not take any action if its current
status is ‘idle’ (i.e. &(t;) = 0). Otherwise, if &;(¢;) = 1, the sensor chooses a
neighbor at random, sends its current value v;(t, ) to that neighbor, and sets
(vi(to),&i(to)) = (e,0) (in particular sets is status to ‘idle’). The selected neigh-
bor, say sensor j, sets v;(t,) = f(v;(t, ), vi(t,)) and &;(¢,) = 1. A pseudo-code
for the algorithm is given in Figure [Il

Procedure Initialize() Procedure Send() Procedure Receive(message)
{vi — A3 if(status=="carrier’){ {vi < f(vi, message);
status<‘carrier’; } choose neighbor; status«‘carrier’;}
send(v;);

Vi < €]

status«<—‘idle’;}

Fig. 1. Three subroutines that specify Algorithm COALESCENT(f, A, G) at node 4. Send()
is activated by the local Poisson clock, and Receive() is activated by message reception
from another sensor.

Algorithm COALESCENT(f, A\, G) is based on sequential execution of f on edges
of G, but these edges are selected in a distributed and randomized manner,
without particular regard to any optimality notion. Note that when an idle node
receives a message the value at the originating node simply passes onto the idle
node, whereas if the receiving node is also a carrier then its value becomes the
image of the two values under f, thereby executing a step towards computation of
F, (A1, A2, -+, An). The following proposition points out a sample-path property
that is useful in proving correctness of the algorithm.

Proposition 2. Under Algorithm COALESCENT(f, A, G),

Fn(vl(t)7v2(t)7“' 7Uﬂ(t)) = F’ﬂ(>‘17)‘27"' 7)‘71)7
for allt > 0.
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We say that a coalescence occurs whenever a message is transmitted from a
carrier sensor to another carrier sensor. Note that the number of carrier sensors
|€()] £ Y1, &(t) is non-increasing in time ¢ and it decreases by 1 at the times
of coalescence in the network. For each integer k < n define the random time
O as

o =1inf{t > 0:]&(t)| = k}.

That is, o is the first time that k carrier nodes remain in the network. The
random variable o7 is of particular interest since v;(t) = e for each sensor i
such that & (¢) = 0, and thus by Proposition [ for t > o, there exists a unique
sensor i(t) such that v;)(t) = Fy, (A1, A2, -+, An). We therefore regard oy as the
stopping time of Algorithm COALESCENT(f, A, G).

Issues in implementation and robustness. The basic form of the algo-
rithm can be modified to recognize the termination time ¢; by maintaining local
counters that keep track of how many coalescence operations were involved in
obtaining the present value of each sensor. Note that this can be implemented in
a distributed manner by including the local counter as part of each transmitted
message. The algorithm is robust against packet losses provided that reliable
protocols such as those based on handshaking are employed at the link layer.
A more serious mode of failure is permanent failure of sensor nodes, since if a
sensor dies when its status is ‘carrier’, then in addition to its initial value \; a
set of other such sensor values are also lost. The impact of such failures is more
pronounced in later stages of the algorithm when each carrier node is the unique
bearer of typically many sensor values. This issue can be mitigated by running
multiple independent instances of the algorithm simultaneously in the network.
The resulting cost in the energy expenditure is a constant factor, which is the
number of such instances.

For more insight on o1 define £(t) = (&;(t) : 4 € V') and note that (£(t) : £ > 0)
is a time-homogeneous Markov process with state space {0, 1} It can be verified
that (£(¢) : t > 0) can be constructed as follows: At time 0 simultaneously start
n simple symmetric random walks, one at each node of the graph G. Namely
each random walk jumps at the ticks of an independent Poisson clock of unit
rate, to a neighboring node chosen at random. Let distinct random walks evolve
independently until two of them occupy the same node, and coalesce these two
random walks into one (that is, bind these two walks together so that they make
the same moves) from that time on. Finally, set &;(t) = 1 if there is a random walk
occupying node ¢ at time ¢, and set &;(¢) = 0 otherwise. The process (£(¢) : ¢ > 0)
is known as the coalescing random walk, and has been extensively studied as dual
process for voter models of interacting particle systems.

The observation of the previous paragraph will be useful in the analysis of the
algorithm in the following section. Here we note that the algorithm terminates
almost surely on any finite graph:

Lemma 3. P(o; < o0) = 1.

Despite its close relationship to random walks, drawing more detailed conclusions
about the complexity of Algorithm COALESCENT( f, A, G) on arbitrary graphs ap-
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pears difficult. In the next section we pursue this goal for the special case of
d-dimensional torus for which substantial understanding of the coalescing ran-
dom walk has been developed in the applied probability literature.

4 Time and Energy Requirements on the d-Dimensional
Torus

Given integers d, N > 1 let T% denote the d-dimensional lattice torus with
N? nodes. The graph T4, can be formally defined by identifying its nodes by
members of {1,2,---, N}¢ and its edges by pairs in {1,2,---, N}? that are at
Hamming distance 1 under modulo arithmetic with respect to N. In this section
we analyze the complexity of Algorithm COALESCENT( f, A, T%) by examining the
coalescing random walk process (£(¢) : ¢ > 0).

We start with considering the termination time ;. It appears reasonable to
expect o1 to be stochastically increasing in the network size; in fact for fixed d
the following result of Cox [10] provides the precise growth rate of each o) with
N. Let

N? ifd=1 1/6 ifd=1
sy =% N2logN ifd=2 and Q=< 2/7 ifd=2
N4 if d > 3, y(d) if d > 3,

where each y(d) is a finite and strictly positive constant as identified in [I0]
Equation (1.2)].

Theorem 4. ([I0, Theorem 6]) Let G = T% . For each integer k > 1 there
exists a random variable o}, such that or /sy converges in distribution to oj.
Furthermore imyn_,oc E[o1/sn] = E[of] = Q.

Distributions of the limiting random variables o} are also obtained in [I0]. The
characterization of o} therein reveals an interesting and somewhat surprising
relationship between (|(t)] : ¢ > 0) and a far simpler random process that
provides substantial insight for the present analysis. Namely, let (D; : t > 0) be
the Markovian pure death process where for each integer state m > 1 a transition

m). For ¢t > 0 and integers n, k let

from m to m — 1 occurs at rate (2

Gn.k(t) = P(Dy = k|Dg = n).

The exact form of g, x(t) is not immediately relevant to the present discussion,
however we note that lim,, o gn i (t) exists for each & > 1 and ¢ > 0, and denote
the limit value by g¢oo,x(t). Explicit expressions for gy 1 (f) and ¢oox(f) can be
found in [T0,16].

Theorem 5. ([10, Theorem 6]) For each integer k > 1 and t > 0, P(oj <t) =
Y1 4 (2t/Q)-
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In informal terms, Theorems [] and [ suggest that for large values of N the
time scaled process (|{(tsy)| : t > 0) behaves almost like the death process
(Dygy2 : t > 0). It can be verified via straightforward comparison of generators
that (D; : t > 0) represents the number of distinct random walks in a coalescing
random walk process when G is completely connected. Hence in the limit of
large N the spatial dependence of the process (|(tsy)| : ¢ > 0) completely
washes out; in the new time-scale distinct walks coalesce with randomly chosen
counterparts, at rates that do not depend on locations. This intuition, however,
should be treated with caution, since like Theorems EHAl it is valid only after
the number of remaining distinct walks reduce to bounded values (for example,
Theorem [ does not provide any insight on o3, i.e. the time required to have
N/3 carriers left).

Remark 6. In search of some insight about the conclusions drawn in previous
paragraphs, suppose for the moment that at each time ¢ the |£(¢)| carrier nodes
are uniformly distributed over T%, independently of the history prior to t. Note
that there is no particular reason for this to hold for ¢ > 0. The instantaneous
rate of decrease of |£(¢)| is proportional to the expected number of edges that
connect two carrier nodes; thus if the above assumption were correct, then this
rate would be equal to

Z P(I connects carrier nodes)
edgesl € £

<de) IEOI1E@)] - 1)
2 ) NN -1)

(400

and in turn one would expect (|£(tN?)|: ¢ > 0) to behave like the death process
(Dyq : t > 0). Theorems [AH7] indicate that this conclusion is not too far off for
dimensions d > 3.

Q

We next turn to the energy requirement of the algorithm. Let
n(t) = Total number messages sent in the network by time ¢.

Note that each carrier node transmits messages at rate 1 and idle nodes do not
engage in message transmission; hence [£(¢)| is the rate of message generation in
the network at time ¢. The mean number of messages transmitted in the network
before the termination of the algorithm is thus given by

Né o1
Elno)] = S kE[osos — o] = B [ / |§<t>dt} | @)

k=2

It is appealing to apply Theorem [l and compute E[n(oq)] for large values of
N by computing the limiting expectation of each o, however only tail of the
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Number of carrier nodes 1&(1)|

<« t=0(sy) t=Q(sy) ——

Fig. 2. The figure illustrates a sample path of the number of carrier nodes in the
network. This trajectory has qualitatively different statistics for small and large values
of t/sn. The mean of the shaded area is the mean aggregate number of transmitted
messages in the network.

integral in equality () can be computed in this manner. More explicitly, the
algorithm has two qualitatively different phases as illustrated by Figure 2 For
t = o(sy) there are many carrier nodes in the network, but their number dimin-
ish very quickly due to their high density. For ¢ = £2(sy) only a bounded number
of carrier nodes exist and o can be approximated by Theorem [l in this time
interval. The former phase is short but it involves a high rate of message trans-
missions, whereas the latter phase lasts long but fewer messages are transmitted
per unit time.

An estimate of the message complexity over the interval ¢ = {2(sy) may be
obtained via the following heuristic argument. Since in this interval (|{(tsn)| :
t > 0) is informally approximated by a death process that dies at a rate that is
roughly proportional to the square of its current value, use the solution of

yt:_yfu yOZNdv

as a proxy to (|£(tsy)| : t > 0). In particular y; = (+ + N~¢)~1. One may then
expect

g1 O'l/SN
/ &(t)|dt = SN/ |£(tsn)|dt
0 0

O'l/SN
~ SN/ yedt
0

=syn(t+ N_d)\gl/sN.



Efficient In-Network Processing 261

Since o1/sy = O(1) by Theorem [ this argument suggests that O(sy log V)
messages are transmitted in the considered interval. This intuition turns out to
be correct and in fact the bound applies to both intervals. A formal statement
is provided by the next theorem:
Let
N2 ifd=1
my = { N2(logN)? ifd =2
Nd log N ifd > 3.

Theorem 7. Under Algorithm COALESCENT(f, A, T)

limsup E[n(o1)/mn] < oo,  ford>1,

N—oo

l%infE[n(al)/mN] > 0, ford=1,
1}\r]n inf E[n(o1)/sn] > 0, for d > 2.

5 A Comparative Case Study

This section compares the time and energy requirements of the proposed algo-
rithm and a gossip algorithm that has been previously studied for distributed
computation of averages. Namely, the task here is to obtain the algebraic aver-
age of N numbers z1, 2, - - , 2 ya each of which is known to a distinct node on
the torus Tﬁiv' As noted by Example [ this task can be accomplished by Algo-
rithm COALESCENT(f, A, T,) by proper choice of A, f and A; (namely by choosing
Ai = (z4,1) for node 7).

In broad terms, gossip algorithms refer to distributed randomized algorithms
that are based on pairwise relaxations between randomly chosen node pairs. In
the context of the present section a pairwise relaxation refers to averaging the
two values available at the associated nodes. For completeness we next give a
full description of this algorithm as studied in [5]. The algorithm is specified by
a stochastic matrix P = [P,;]yaxyae such that P;; > 0 only if nodes ¢ and j are
neighbors in T%:

Algorithm GOSSIP-AVE(P): Each sensor ¢ maintains a real valued variable with
initial value z;(0) = z,. Each sensor has a local Poisson clock that tick indepen-
dently of other such clocks. At the tick of this clock, say at time t,, sensor i chooses
a neighbor j with respect to the distribution (P;; : j = 1,2,---, N%) and both
nodes update their internal variables as z;(t,) = z;(to) = (zi(t, ) + z;(t,))/2.

Let the vector z(t) = (21(t), 22(t),- -+ , znya(t)) denote the sensor values at time
t, T denote the average of x1, 2, -+ , x4, and 1 denote the vector of all 1s. Define
T as the kth time instant such that some local clock ticks and thereby triggers
messaging in the network. For e > 0 let the deterministic quantity K (e, P) be
defined by

—z1
K(e, P) :supinf{k . Pr (”Z(Tk) 71, >s> <e}.
2(0) [2(0)]]5
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Table 1. Comparison of the two algorithms on the d-dimensional torus with N¢
nodes, T%

Energy requirement per node Termination time
COALESCENT(f, X, T%) | GOSSIP-AVE(P) | COALESCENT(f, \, T%) | GOSSIP-AVE(P)
d=1 O(N) Q(N?) O(N?) Q(N?)
d=2 O((log N)?) Q(N?) O(N?log N) Q(N?)
d>3 O(log N) Q(N?) O(N%) Q(N?)

In [5] K (e, P) is considered as a termination time for Algorithm GOSSIP-AVE(P)
and minimization of K (g, P) is sought by proper choice of P. While the choice
of K (e, P) as a stopping criterion might be questioned (||z(7x(c,p)) — Z1)|oc/|Z|
may be much larger than ¢), here we adopt the same interpretation for this
quantity for comparison purposes. The following theorem determines the order
of K (e, P) uniformly for all P on the torus T%:

Theorem 8. For fived ¢ > 0, K (g, P) = 2(N%*2) uniformly for P such that
Py; > 0 only if (i,7) is an edge in TS .

Note that K (g, P) is a termination criterion in terms of the transmitted messages
in the network. Specifically, K (e, P) represents half of the aggregate number of
messages transmitted in the network before Algorithm GOSSIP-AVE(P) termi-
nates (to be precise, every time a clock ticks two messages are transmitted in
opposite directions on some edge). This observation translates to a termination-
time estimate since the point process (71, 72,73, - - - ) is Poisson with rate N¢ and
it takes roughly K (g, P)/N time units to produce a total of 2K (¢, P) messages.
Theorem | thus has the following corollary:

Corollary 9. Algorithm GOSSIP-AVE(P) terminates within 2(N?) time on T4;.

The obtained complexity results are summarized in Table [I1

Interestingly, there appears little practical incentive to consider higher dimen-
sions for COALESCENT( f, J\, -). Namely Table[llindicates that in arranging n nodes
on ']I‘dii/717 the marginal gain in either performance measure by going from d to

d+ 1 is a factor of O(logn) for d = 2, and a factor of O(1) for larger values of
d. This observation hints at favorable properties of the 3-dimensional torus and
suggests that it is unlikely to experience substantial performance losses due to
edge failures. A formal statement of this intuition does not seem straightforward.
However the suggested insensitivity to nodal degrees is likely to have important
practical implications with regard to robustness, especially in situations where
the network topology cannot be planned or controlled.

We next provide numerical results on geometric random graphs, which have
received substantial interest as suitable models for wireless ad-hoc networks. See
for example [I§] and [5]. A geometric random graph I' = (Vp, Er) is obtained
by uniformly distributing a set Vi of nodes, hence |Vr| = n, on the unit square
and drawing an edge between any pair of nodes that fall within distance r(n) =
\/ 2logn/n of each other. We have first created geometric random graphs and
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Fig. 3. The average number of transmitted messages per-node on geometric random
graphs with n nodes. e = 107° for GDSSIP-AVE.

discarded the disconnected ones in order to avoid trivialities. Then we have run
both COALESCE and GOSSIP-AVE on the created geometric random graphs 50
times in order to quantify the number of transmitted messages. We have taken
€ = 1075 for GOSSIP-AVE. The results are plotted in Figure Bl It is observed
from Figure [3] that COALESCE favors significantly against GOSSIP-AVE in terms
of number of messages transmitted. The asymptotic properties of COALESCE on
geometric random graphs as the number of nodes gets large is still ongoing
research.

Remark 10. Time and message complexities of Algorithm GOSSIP-AVE(P) are
inherently related to mixing times of random walks on the torus, and thereby to
the spectral gap of the stochastic matrix P. The conclusions of this section should
be expected to hold for other distributed algorithms, such as those in [13}3L[15],
that are based on powers of the incidence matrix of an underlying connectivity
graph and have similar stopping criteria.

6 Conclusions

This paper concerns distributed algorithms for in-network computation of de-
composable functions in sensor networks. Such algorithms typically need to com-
ply with two conflicting requirements: On the one hand expedited convergence
of the algorithm is desirable from an application viewpoint. On the other hand
limitations due to energy-limited sensors impose frugal usage of energy as an
indispensable feature. The emphasis of this paper is the trade-off between time
and energy requirements.

We introduced and analyzed a distributed algorithm that is based on co-
alescing random walk on the communication graph of a sensor network. The
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algorithm is asynchronous, requires local information for each sensor node, and
it is resilient against packet losses and node failures. In informal terms, the main
theme of this algorithm is parsimonious message transmissions. Namely, upon
transmitting a message a node enters a quiescent state which lasts until the node
receives a message from a neighbor. This operational mode leads to substantial
energy savings as the long-term rate of message transmissions at any node de-
creases in time and tends to the reciprocal of the total number sensors in the
network. We show that the algorithm terminates with the exact value of inter-
est, regardless of the network topology. We pursue more detailed analysis on the
d-dimensional torus with n nodes and show that the completion time of the algo-
rithm is O(n(logn)®) and energy requirement per sensor node is O((logn)®*1)
where o = 1 for d = 2 and a = 0 for d > 3. The algorithm thus has a scalable
energy requirement, furthermore its performance fairly insensitive to the dimen-
sion d of the torus so long as d > 2. This latter observation may prove useful in
estimating the performance of the algorithm on less regular network topologies.

We also studied the relative time and energy requirements of the algorithm
with respect to other in-network processing algorithms based on powers of the
network connectivity graph. In particular we focused on a gossip algorithm for
computing averages, and showed that both time and per-node energy require-
ments scale as 2(n) on the 2-dimensional torus irrespectively of the choice of
distribution for neighbor selection for pairwise relaxation. Hence the proposed
algorithm achieves a factor of £2(n/(logn)?) gain in energy at the expense of a
factor of O(logn) loss in completion time.
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