Ecological Applications of Sensor Networks

Brian Neiswander, Faye Walker

Thomas Little Multimedia Communications Lab

Presentation Outline

- Motes
- MATLAB Analysis
- Photosynthesis Models
- Project Future
- Questions

Project Goals

- Use wireless sensor networks (WSN) to monitor ecological phenomena
- Motes to MATLAB interface
- Model carbon uptake during photosynthesis
- Compare results with conventional methods

What is a Mote?

- Wireless
- Sensors
- High data resolution
- Power efficient
- Cheap

Mote Assembly

Mote Calibration

- Not factory calibrated
- Paper diffusing light box

Calibration Curves

Mote grid

Base station and Matlab

Real-Time Analysis

- Data arrives at random times
 - Universal time
 - Temporal interpolation
- Motes located discretely
 - 3D spatial interpolation
- Motes die
 - Smarter dynamic algorithm

Photosynthesis

- Converts sunlight energy to chemical energy.
- Plant consumes CO2
- Intentions
 - Collect WSN data relevant to photosynthesis
 - Calculate photosynthetic activity over WSN area

Photosynthesis Models

- Simple model
 - f(L) = CO2
 - Can use averaged data

- L = light Intensity
- t = time response
- T = temperature

- Dynamic model
 - f(L, t, T) = CO2
 - Cannot use averaged data

Model Data

- Conventional Satellite Methods
 - Resolution usually 1 sq. km
 - Dynamic equations
 → flawed results
- Wireless Sensor Networks
 - Almost unlimited data resolution
 - Dynamic equations

 better results

Simple Model

- P_{max} max CO2 consumption
- a quantum yield
- h light intensity
- R_d dark respiration rate

Photosynthetic Curve

Project Future

- Find dynamic model
- Finish MATLAB applications package
- Build low power LINUX base station

• Field tests

• Compare results with conventional methods

Review

- Motes are cheap and effective tools for collecting data over an area
- MATLAB interface is useful
- Complex photosynthesis models work better with WSN

Questions?