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Abstract 

 

Given the growing number of elderly people and patients diagnosed with Parkinson’s disease, 

monitoring functional activities using wearable wireless sensors can be used to promote the Quality of 

Life and healthier life styles. We propose a novel and practical solution using three small wearable 

wireless Functional Activity Monitor (FAM) sensors and a smartphone to store, transmit, analyze and 

update data. Three sensors, each composed of a tri-axial accelerometer and a tri-axial gyroscope, are 

attached to the chest and both thighs. A computationally efficient signal processing algorithm is 

designed to accurately measure tilting angles. A continuous activity recognition algorithm is developed 

using a decision tree based on time series data and spectrum analysis; this algorithm can identify 

activities of daily life in three general categories: (1) postures such as standing, sitting, and lying; (2) 

locomotion such as walking; and (3) transitions such as sit-to-stand and stand-to-sit. The results show an 

accurate angle measurement compared to the motion capture system Optotrak 3020 and a reliable 

detection of all activities with sensitivity at least 96.2% compared to video recordings. 
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1. Introduction 

 The aging of the population and the increase of chronic diseases and Parkinson's disease have 

already had a major impact on most western health care systems [1], and will have continuously 

increasing effects in the future. In the United States, 12.4 percent of the population were adults 65 and 

older in 2005 [2], and it is estimated that about 1 in 5 will be elderly by the year 2030. The need for 

personal assistance with daily living activities increases with the age, therefore, the quantification of 

daily physical activities is essential in the evaluation of the functional ability and the Quality of Life of 

subjects with limited mobility and in rehabilitation. Aminian et al. show that a slower gait, a reduction 

of daily walking distance and a decrease in the number of walking episodes are indicators of disease 

progression [3].  Elderly people and patients with chronic pain, Parkinson’s disease and stroke also have 

a high risk of falling. 

 There are several methodologies used in monitoring functional activities such as questionnaires 

[4], video recordings [5], and sonic, magnetic and optical motion capture systems [6]. However, these 

systems have various limitations in accurately mobile monitoring daily activities in the home and 

community setting. The technology of Micro Electro Mechanical Systems (MEMS) boosts the 

development of miniature and low powered inertial sensors, accelerometers and gyroscopes, to analyze 

human movement based on kinematics. The prevalence of wireless communication techniques and 

smartphones enable physicians and patients to continuously monitor functional activities through 

wireless wearable sensors. 

 Devices using accelerometers alone to measure angles are inaccurate when angles are large or in 

accelerating movements [7]. The gyroscope is largely adopted to improve the accuracy of angle 

measurements [8]. The intrinsic drift produces large error after numerical integrating angular rates to 

angles. The uses of Kalman filters, wavelet transforms and neural networks have significantly reduced 

the drift [7][9][10], but these algorithms are complex to be implemented in real-time online due to the 

computational power and energy consideration of the smartphone. 

 The objective of this study is to develop a FAM system that can (1) continuously measure body 

tilting angles in an accurate and computationally efficient manner, (2) record and analyze functional 

activities, and (3) further provide accurate real-time feedback via a smartphone in the home and 

community setting. It is hypothesized that by means of three FAM sensors attached to the chest and both 

thighs, the signal processing algorithm can accurately measure the movement’s amplitude of the body 

segments; and the activity recognition algorithm can accurately detect postures (sitting, standing, lying), 

locomotion (walking) and transitions in a window of one second, and provide a summary of durations of 

daily activities to quantify the level of activity. The signal processing and recognition algorithms are 

computationally efficient to be executed real-time online on the smartphone instead of traditionally post 

hoc on a personal computer. Furthermore, this system can offer options to detect step/stride frequency 

and to quantify level of activity to give different perspectives in diagnosis, prognosis, and 

responsiveness of treatments. This paper is organized as follows: methods including measuring system, 

study design and algorithms are explained in section 2; results are presented in section 3; and a 

discussion is in section 4. 
 

2. Methods 
 

2.1. Measuring System 
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 The FAM sensor is the Inertial Measurement Unit 6 Degree of Freedom version 4 (IMU-6DOF-

v4) fabricated by SparkFun Electronics, Boulder, CO. It is a two-printed circuit board (PCB) unit at the 

size of 50mm×40mm×15mm, small and affixable to the human body. The kinematic sensors are 

composed of one triple-axis accelerometer (Freescale, MMA7260Q, settable to 1.5g, 2g, 4g or 6g 

sensitivity) and two gyroscopes (InvenSense, IDG500, 500 degree/second) aligned to work as triple-axis. 

Three FAM sensors attached to the chest and both thighs measure angles and angular velocities in the 

vertical, frontal and saggital axes. The FAM sensor transmits data to the smartphone (AT&T 8525) over a 

Bluetooth link. The smartphone stores data, analyzes data online, provides feedback to the user, and can 

further update results to the health care center through either an Internet or cellular connection. 

 For the purposes of measuring angles and monitoring functional activities accurately while 

reducing energy consumption to prolong the battery life, the sensitivity of accelerometer is set to its 

highest at 1.5g, the gyroscope is working at its full range, and the sampling frequency is set to 50 Hz in 

the configuration on the IMU development platform. 

 The Optotrak 3020 (Northern Digital Inc., Waterloo, ON, Canada) is employed as reference to 

test the accuracy of the angle measurements of FAM system. The Optotrak 3020, consisting of wired 

infrared light-emitting diodes (IREDs) captured by banks of cameras, is a widely used three-dimensional 

motion capture system in laboratory settings in the field of movement analysis [11]. A video recording 

system consisting of two high definition cameras (HS 100P/PC, Panasonic Inc. and VIXIA HG21, 

Cannon Inc.) is used as reference to test the activity recognition algorithm. 

 

2.2. Study Design 

 Three studies demonstrated in Fig. 1 were conducted to develop and test the FAM system. The 

specific aim of the first study was to develop an accurate signal processing algorithm to measure static 

angles. The second study focused on testing its accuracy on measuring dynamic angles of oscillation. 

The third study enrolled 10 healthy young subjects to train and test the activity recognition algorithm. 

All studies were conducted in the Clinical Movement Sciences Lab, and written informed consents were 

obtained from all the subjects. 

 

Figure 1.  Study design in the frontal view 

FAM sensor 

IRED 

Smartphone 
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 1) First study: The Digital Angle Protractor (Denali) was set to five fixed angles, 0°, 30°, 60°, 90°, 

and 120°(-60° in the FAM and Optotrak system), holding for 1 minute each.  Three FAM sensors were 

attached to the tilting arm, and sensing data was collected by the smartphone and then analyzed. Three 

IREDs were placed on both arms and at the axis, and a bank consisting of three cameras was placed at a 

distance of three meters perpendicular to the angle protractor plane.  

 2) Second study: The Biodex system (SEMI, Toronto, ON), set to the passive mode, was 

programmed to produce consistent and precise oscillations at desired angles and frequencies [12]. Twenty 

oscillating trials were set at the amplitude of 120°, 90°, 60°, 30° and 5° at four different frequencies 80, 

60, 40, 20 bits/min, and each trial lasted for 1 minute. Three FAM sensors were attached on the rotating 

arm. The first IRED was placed at the end of the moving arm, the second on the axis of rotation, and the 

third aligned vertically with the second in order to provide a reference segment. A bank of three cameras 

was placed perpendicular to the oscillation plane at a distance of five meters. 

 3) Third study: 10 healthy young subjects (5 females, 5 males, 23±3 years old) performed 

functional activity trials, including (1) 1 trial of 10 transfers from standing to sitting and vice versa, (2) 1 

trial of transfers from standing to sitting to lying down to sitting then back to standing, and (3) 15 trials of 

standing to walking to standing, 5 at each of the subject’s preferred, slow, and fast speed. As the duration 

of transitions is naturally 2 or 3 seconds, to test our algorithms all postures and locomotion lasted for 

more than 10 seconds. Three FAM sensors were attached to the chest, right and left thigh respectively, 

and the video recording system was placed facing the subject. 

 

2.3. Signal Processing 

 The key feature to detect forward leans to prevent falls is the chest angle versus the vertical axis. 

A computationally efficient signal processing algorithm illustrated in Fig. 2 is used in the FAM system to 

accurately measure body angles. This algorithm does not need to perform computationally expensive 

calculations needed for traditional methods such as complex presumptions and matrix multiplications in 

the Kalman filter or at least five layers of decomposition of time series into approximate and detail parts 

in the wavelet transforms. 

 

Figure 2.  Signal processing flow  

 The accelerometer signals are filtered using a 2nd-order forward-backward digital low-pass 

Butterworth filter with a cutoff frequency at 3 Hz [13]. The angle from the accelerometer AccAngle is 

calculated from three orthogonal components gx, gy, and gz countering the gravity by an arctangent 

function as in (1), because the resolution of either arcsine or arccosine function varies significantly 

through the tilt range. 

 

(1) 
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 Considering the frequency range of human movements, any filter with clear cutoff frequencies 

would severely attenuate important movement signals in its stopband, and thus cannot be applied to 

MEMS gyroscope signals. Instead, a median-mean filter as in (2) is designed to eliminate burst noise and 

outlier signals [14], where xn is the angular rate sensed by the gyroscope and yn is the filtered angular 

rate. The window width 2m+1 is selected carefully to preserve useful information and m is often set to be 

within the range of 3 to 5. 

 

(2) 

 

 A complementary filter as in (3) is designed to compensate the gyroscope’s drift by the 

accelerometer, working as a Proportional-Derivative controller where the angle measured by the 

accelerometer is the proportional part and the angular rate from the gyroscope is the 1
st
 order derivative 

part. The complimentary filter functions as the combination of a high-pass filter and low-pass filter 

structured inside in Fig. 2. In (3) Angle is the angle output of the complimentary filter, GyroRate is the 

angular rate after median-mean filter and AccAngle is the angle calculated from the accelerometer, 

where (n+1) is the corresponding data following (n) in time series. The coefficients HPF and LPF 

usually sum to 1 and can be estimated by the Genetic Algorithm. In this study coefficients are trained 

and tested by angles measured by the Optotrak system. 

 

(3) 

 

 

2.4.  Activity Recognition 

 To identify postures, locomotion and transitions, a decision tree is built as in Fig. 3. Tilting 

angles of chest and both thighs are inputted to the decision tree and segmented by a sliding window of 1 

second. The standard deviation (SD) of these three angles is calculated in every second. From training 

data, SD of 2° is obtained as the threshold to decide static activities (postures) or dynamic activities 

(locomotion and transitions). The three mean angles in the same second are evaluated to further classify 

static postures into standing, sitting, and lying down; if none is identified, the posture will be labeled as 

an unidentified posture. When the 1st second of dynamic activity is detected, the algorithm counts the 

number of peak chest angles. If the number of peaks is less than or equal to 3 and the maximum angle 

difference from the mean angle of last second of static activity is greater than 20°, a transition is 

detected. If the number of peaks is greater than 3, the algorithm estimates the power spectrum density 

(PSD) of the original input chest angles to identify the step frequency. If the step frequency falls in the 

range obtained from the training data [15], locomotion is detected; otherwise that second of time will be 

labeled as an unidentified dynamic. The algorithm processes the activity identification sequence using a 

window of 1 second and provides a summary of total durations of each activity for the quantification of 

activity level. 
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Figure 3.  Activity recognition algorithm flowchart  

 

3. Results 

 1) First study results: The measurements of static angle are shown and compared in Table I. The 

difference in mean scores per position between the FAM system and the Optotrak system ranges from 

minimally 0.26° to maximally 1.18° with a mean difference of 0.57° and a SD of 0.92° across all 

positions. 

TABLE I.  FIST STUDY COMPARISON  

Protractor 0 30 60 90 120(-60) 

FAM 0.801 32.503 64.671 91.108 -59.837 

Optotrak 1.985 33.65 64.409 90.188 -58.654 

 

 2) Second study results: Descriptive results of measuring oscillation amplitudes are compared in 

Fig. 4, and the error bars indicate the 95% confidence interval. The difference between the FAM system 

and the Optotrak system ranges from minimally 0.06° to maximally 2.3° with an average of 0.601° and a 

SD of 0.188° across all oscillations. 
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Figure 4.  Activity recognition algorithm flowchart  

 3) Third study results: The agreement of activity recognition between the FAM system and the 

video recordings is 98.96% in average for all static postures, transitions and locomotion. The Sensitivity 

(probability of detection) of each activity is shown in Table II with a maximum of 100% and a minimum 

of 96.2%. The mean difference in the durations of the activities between the FAM system and the video 

recordings is 0.148 second and the SD is 0.235 second. 

TABLE II.  SENSITIVY OF ACTIVITY RECOGNITION   

activity  postures  locomotion transitions 

 sitting standing lying   

sensitivity 98.60% 96.2% 100% 100% 100% 

 

4. Discussion 

 In this paper, we have presented computationally efficient algorithms for measuring angles and 

monitoring functional activities using kinematic data from three wearable wireless miniaturized FAM 

sensors that can be conveniently worn by elderly people and patients with chronic pains, Parkinson’s 

disease, and risk of stroke, and a smartphone that will be widely used in the whole society. The signal 

processing algorithm proposed in the FAM system is shown to have high accuracy on a data set for 

measuring both static and dynamic angles. The activity recognition algorithm is shown to have 

consistently high sensitivity for general functional activities such as postures, locomotion and transitions 

in all trials. In our on-going research, we are implementing these algorithms on the smartphone for real-

time online monitoring and testing the FAM system on subjects for longer time, such as a day or a week, 

in the home and community settings. In future research, we will assess the performance of the other two 

axes, work on a hierarchical configuration of the FAM system and develop a stochastic decision 

algorithm for free-style monitoring. We also will extend to develop smartspaces for pervasive health. 
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