
1

Accelerated Impulse Response Calculation for
Indoor Optical Communication Channels

M. Rahaim, J. Carruthers, and T.D.C. Little

Department of Electrical and Computer Engineering
Boston University, Boston, MA 02215

{mrahaim, jbc, tdcl}@bu.edu

MCL Technical Report No. 09-01-2012

Abstract

In the modern era of communication systems, wireless data transfer is essential for appealing to the
growing user demand for ubiquitous high data rate network connectivity. Increases in the complexity of
wireless applications along with the diversification of wireless devices has led to forecasts indicating
continued gains in wireless consumer IP traffic [1] and concerns regarding congestion in the RF
spectrum. This has opened the door for other means of wireless data transfer including optical media
such as Infrared (IR) and Visible Light Communication (VLC). Much of the recent work in optical
communications has focused on appropriate modulation techniques. A fast and accurate optical channel
model is important when estimating achievable data rate in the analysis of these techniques. Such a
model should observe received power as well as the impulse response between transmitter and receiver
in order to estimate inter-symbol and inter-channel interference.
In this work, we observe the channel modeling software “Communication and Lighting Environmental
Simulation” (CandLES) [2] and more specifically the impulse response simulator carried over from
previous work by Carruthers et al. for IR channels – IRSIM [3]. We accelerate the algorithm for
complex environments by adding parallel processing and show a performance increase between 5x and
20x, depending on the simulation settings. In the following, we overview the algorithm and original
implementation of IRSIM, discuss the accelerated GPU implementation, and compare the performance
of each.

Keywords -- Visible Light Communication, Impulse Response, GPU, Parallel Programming.

In IEEE International Conference on Wireless Information Technology and Systems (ICWITS 2012),
Maui, HI, United States, November 2012. This material is based upon work support by the National
Science Foundation under Grant No. EEC-0812056.

2

1. Introduction

In the modern era of communication systems, wireless data transfer is essential for appealing to the
growing user demand for ubiquitous high data rate network connectivity. Increases in the complexity of
wireless applications along with the diversification of wireless devices has led to forecasts indicating
continued gains in wireless consumer IP traffic [1] and concerns regarding congestion in the RF
spectrum. This has opened the door for other means of wireless data transfer including optical media
such as Infrared (IR) and Visible Light Communication (VLC). Much of the recent work in optical
communications has focused on appropriate modulation techniques. A fast and accurate optical channel
model is important when estimating achievable data rate in the analysis of these techniques. Such a
model should observe received power as well as the impulse response between transmitter and receiver
in order to estimate inter-symbol and inter-channel interference.

In this work, we observe the channel modeling software “Communication and Lighting Environmental
Simulation” (CandLES) [2] and more specifically the impulse response simulator carried over from
previous work by Carruthers et al. for IR channels – IRSIM [3]. We accelerate the algorithm for
complex environments by adding parallel processing and show a performance increase between 5x and
20x, depending on the simulation settings. In the following, we overview the algorithm and original
implementation of IRSIM, discuss the accelerated GPU implementation, and compare the performance
of each.

2. Indoor Optical Channel Model

In this section, we review the optical channel model and core algorithm behind the IRSIM software. Due
to directionality, path loss in an optical channel is modeled differently than that of an RF channel. Angle
of transmission as well as angle of acceptance become a factor in the received electrical signal, therefore
additional parameters get added to the system. As a general model, the line of sight (LOS) received
power, , at destination j from source i is modeled as

where is the transmitted optical power, is the area of the destination, is the distance between
source and destination, and represent angles of emission and acceptance, and the functions
and represent the sources intensity pattern and the destinations optical gain function, respectively.
The intensity pattern of an LED is modeled as Lambertian with order and the optical gain function for
a bare photodiode is observed as . In addition, the delay from source to destination is
observed as , where denotes the speed of light. In the model, all transmitters, receivers and
reflectors are observed as point sources.

Rather than observing a time step simulation and maintaining every path – increasing overhead and
complexity with each reflection – the algorithm developed in [3] uses an event driven simulation to
model the received signal depending on the number of reflections in a path from transmitter to receiver.
This method benefits from known memory overhead and a calculation time which increases at a
constant rate per reflection. As a high level overview, the algorithm follows the five steps listed below:

3

1. Zero Bounce (LOS) Calculation: The zero bounce calculation determines the LOS impulse response (delay
and attenuation) at each receiver from the set of transmitters. Note that the attenuation function observes
objects in the room and returns 0 if the path is obstructed.

2. Room Partitioning: The environment is next partitioned into reflectors – or source / destination pairs. This
is done by observing each object and walls of the room as a set of planes. Each plane is divided into a set of
reflectors and added to a list. Throughout the remainder of the paper, we refer to the list of reflector
received signals as the matrix. This is an X matrix where represents the maximum number of time
slots of an impulse response array and represents the number of reflectors in the environment. Note that
increases with smaller time steps or an increased number of reflections.

3. Matrix Initialization: This step of the algorithm calculates delay and attenuation from each transmitter to
each reflector and stores the results to the appropriate time slot in the matrix.

4. Received Power Update: Given the matrix described above, delay and attenuation from each reflector to
each receiver is calculated. The X 1 reflector array is convolved with the delayed attenuation impulse and
added to the appropriate time slots in the receiver impulse response array.

5. Matrix Update: The final stage of the algorithm updates the matrix for the next reflection. Attenuation and
delay is calculated between each pair of reflectors and the received signal is stored in a temporary matrix.
Once completed, the new matrix is used to determine the receiver signals from the next reflection by
repeating step 4. These two steps are repeated so that the receivers have the sum of the LOS response and
multipath responses from each of the desired reflections.

3. GPU Accelerated Impulse Response

High complexity implementations of the basic IRSIM algorithm, including those with small time step, a
large number of reflectors, or multiple reflections, are potentially very time consuming. Each iteration
(or reflection) relies on the previously calculated matrix, therefore is dependent on the previous and
should be run sequentially; however each step in the algorithm allows for parallelism and an opportunity
for improvement in the overall performance.

• Zero Bounce (LOS) Calculation: This step can be parallelized by allowing each thread to observe a specific
transmitter, receiver, or pair. Due to write dependencies, selecting a transmitter or pair per thread requires
synchronization across threads; however allowing each thread to observe a receiver allows threads to run
independently. The GPU function first determines the receiver associated with the thread and loops through
the necessary calculations from all sources to the specific receiver.

• Matrix Initialization: Here we follow a similar method to the LOS calculation, now observing transmitter
and reflector pairs. Again, due to write dependencies at the reflectors, we parallelize by associating threads
with a reflector and having each thread loop through all transmitters. The reflectors from different planes
are associated with different GPU blocks and each block is padded so that the total number of threads per
block is equal to the number of reflectors in the largest plane. If the largest plane has more reflectors than
the maximum threads per block, we divide each plane amongst multiple blocks. Each thread observes its
location relevant to the associated plane and is considered invalid if it does not map to a reflector. If valid,
the thread loops through transmitters and calls the same attenuation / delay function from the LOS
calculation.

4

• Received Power Update: In this step each receiver is given a thread (as with the LOS calculation) which
determines the signal from each reflector to the receiver. The parallelism here is dependent on the number
of receivers rather than the complexity of the environment.

• Matrix Update: Here, each reflector must determine the received signal from each other reflector, leading to
a complexity on the order of in the basic implementation. To parallelize this, we setup the GPU grid
and blocks in the same way as the matrix initialization. Every valid thread determines its associated
reflector and calculates received signal from all other reflectors – allowing the GPU implementation to
potentially run with a number of execution steps on the order of .

4. Results and Conclusions

In order to compare the accelerated implementation with the original software, we observe performance
and accuracy. Both sets of simulations are run on the same workstation – an HP Z400 with an Intel Xeon
W3505 processor. The GPU used for the accelerated simulations is an Nvidia GeForce 285 with CUDA
version 2.3. Table I offers an overview of the performance improvements provided by the accelerated
implementation in multiple scenarios and Figures 1-4 show detailed analysis of the performance across a
range of complexity metrics for the Cubicle scenario discussed in [2].

Table 1: Accelerated IRSIM speedup for various room scenarios

Scenario Room Size Time Resolution Spatial Resolution Reflections Speedup

Small Empty Room 4m x 4m x 4m 2.5 ns 8 divisions / m 2 19.10x

Large Empty Room 8m x 8m x 8m 5 ns 10 divisions / m 4 20.73x

Cubicles / Office 6m x 6m x 3.5m 5 ns 6 divisions / m 4 12.98x

In Figures 1 - 4, we compare the execution time of the GPU accelerated implementation to the original
IRSIM CPU implementation and observe the speedup. Figure 1 shows performance as spatial resolution
ranges from 2 to 10 divisions / m with a time resolution of 2.5ns. Similarly, Figure 2 compares
performance as time resolution ranges from 0.5ns to 5ns with a spatial resolution of 6 divisions / m.
Both sets simulate 4 reflections. In general, the accelerated implementation offers an 8x to 13x
performance increase for these scenarios. Higher spatial resolution scenarios offer better improvement
due to the larger number of reflectors, , which leads to a larger matrix. Similarly, larger time step
scenarios have shorter impulse response arrays, , associated with each reflector. The smaller ratio
leads to a higher speedup when comparing the GPU implementation to the basic CPU implementation.
Speedup begins to decline at higher spatial resolution (very large) due to growing number of invalid

Figure 1: Performance versus Number of Reflectors Figure 1: Performance versus Time Resolution

5

threads from block padding. This can be mitigated in future work by adjusting the mapping between
threads and reflectors.

Figures 3 and 4 show performance as the number of reflections ranges from 0 to 5 with a spatial
resolution of 10 divisions / m. Note that the CPU provides better results for LOS simulations due to the
overhead of memory transfer in the accelerated implementation; however, multiple reflection scenarios
perform better with the GPU implementation due to the parallelization of the matrix update step. In
general, speedup remains constant as the number of reflections increases (as shown in Figure 3);
however scenarios with a small time step show a drop off in speedup after the second reflection (as
shown in Figure 4). Since the length of the impulse response array increases with the number of
reflections, the ratio also increases leading to this decrease in speedup.

In addition to performance metrics, we have also compared the output from the CPU and GPU
implementations in order to validate the accuracy of the results. There was an average difference of 2nW
in the calculated signal power at the receivers in the simulation, which equates to an average of 0.6%
error from the basic IRSIM results. This is likely due to the precision of 64 bit floating point operations
on the CPU versus 32 bit floating point operations on the GPU. Normalized impulse responses are
nearly exact matches, with a 0.5% average difference.

In conclusion, we have shown excellent performance increases in the IRSIM simulation software by
taking advantage of the parallelism offered by a GPU implementation. For simulations of typical
resolution, we have shown speedup between 5x and 20x when compared to the basic implementation.
This improvement allows simulations to complete at a much faster rate which will be beneficial for
future observation and analysis of indoor optical communication systems.

5. References

[1] Cisco Visual Networking Index. “The Zettabyte Era.” San Jose, CA, May 30, 2012.
www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.html

[2] M. Rahaim, T. Borogovac, and J.B. Carruthers. “CandLES – Communication and Lighting
Emulation Software.” WiNTECH ’10, Chicago, IL, September 2010.

[3] J.B. Carruthers, S.M. Carroll, and P. Kannan. “Propogation modeling for indoor optical wireless
communications using fast multi-receiver channel estimation.” Optoelectronics, IEEE Proceedings,
pages 473-481, 2003.

Figure 3: Performance versus Reflections
Time Resolution: 5ns

Figure 3: Performance versus Reflections
Time Resolution: 0.5ns

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/VNI_Hyperconnectivity_WP.html

	1. Introduction
	2. Indoor Optical Channel Model
	3. GPU Accelerated Impulse Response
	4. Results and Conclusions
	5. References

