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Abstract—A two phase hybrid algorithm for estimating the locatioraahobile node, which has
the capability of measuring signal strength, azimuth, dadagion, in a smart space environment
over the visible light channel is proposed. In contrast tovemtional triangulation approaches
which are performed in a simplified plane, the smart roomitecture requires a non-planar solu-
tion due to the illumination requirement. Furthermore,vantional triangulation approaches can
at times produce numerically ill-defined solutions, thgrplohibiting a notion of target location.
Instead of solely relying on triangulation, the mobile neé@stimate their locations through a two
phase approach in which they firstly exploit the signal giterobservables with unique IDs to
establish acoarseestimate, and secondly use the azimuth and elevation @igesvto establish
afineestimate. In many cases, tfiee estimate will improve upon theoarseestimate; however
when triangulation fails, the algorithm yields tbearseestimate rather than a localization failure.
Since the environment model relies on the primary requirdrokadequate illumination, the num-
ber of LED anchors and transmit power for communication fioms are determined. Simulation
results confirm the effectiveness of the hybrid two phasalipation approach in a smart space in-
door environment by having a mediaoarsephase accuracy of 34.88 cm anfireephase median
accuracy of 13.95 cm.
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grant No. EEC-0812056. Any opinions, findings, and conolusior recommendations expressed in this material are
those of the author(s) and do not necessarily reflect thesvidthe National Science Foundation.
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1 Introduction

Localization has been a subject of growing interest for yeas mobile computing is becoming
the norm in society. Many of the functions that mobile sezgiprovide rely heavily on having
some notion of device position. The research field has beeddhbwith many attempts at bal-
ancing performance, cost, and complexity of positioningtems. There have been two main high
level approaches set forth to solve the localization probl€l) exploiting existing infrastructure
and developing algorithms to perform the best possiblergitie infrastructure available and its
constraints (e.g. WiFi signal strength, Fluorescent ligijt[4] or (2) designing specialized solu-
tions that address the fundamental issues that are core fodalization problem using the best
technologies to solve the problem. Examples of such tecgned are Ultrasound, Infrared (IR),
Ultrawideband (UWB), [8] and even imaging techniques [0][11]. One thought is to use one of
the most ubiquitous sources (lighting) in an indoor spadetba balance between infrastructure
and technology optimization approaches to indoor locatma Currently, fluorescent lighting us-
ing low-rate frequency shift keying waveforms [13][14] areteiver switching methods coupled
with a 6-axis sensor for LED lighting [12] have been propoaggdolutions in this context. Neither
of these approaches take into account the potential fomalitr designing the balance between
lighting and target localization.

With the introduction of energy efficient LEDs and the waosléver-growing demands for en-
ergy, a transition to solid state lighting will happen. LE& light for that matter have the ability
to offer unparalleled opportunity for mobile computing. rétgh this infrastructure overhaul re-
searchers have the ability to carefully architect and shiapevay light can be used to localize
mobile devices but also enable intelligent spaces. Althotlge concept of amart roomhas been
gaining attention, it should be noted that localizing antbding various targets is vital to its oper-
ation. Therefore, the task of localization is more compédaas a variety of targets of interest may
or may not occupy the space and to date many approaches fodumimg devices that have the
ability to communicate, not necessarily people, animaild,even chemicals without incorporating
some form of imaging or simple motion sensor.

Section Il provides the necessary background descriptidieoVisible Light Communication
(VLC) channel and its constraints while touching on the meltary localization. Section Il de-
scribes the system model in which we analyze the lightinggaaetric constraints and describe
the two phase algorithm. Section IV provides the resulteims of location accuracy for both the
coarse and fine phases measured against the ground trutihewenstructed indoor environment,
while Section V concludes the investigation and proposeasafor new research.

2 Background

Indoor localization has been explored in many contexts it often finds application in pig-
gybacking existing communication infrastructures (e.gF\Bluetooth) due to the fact that cus-
tomized solutions (e.g. UWB, Ultrasound, and IR) are toceegive and require hardware devoted
solely to localization in addition to existing communiaatiinfrastructure. Moreover, localization
in the conventional sense requires transceivers whichagalde of processing channel measure-
ments (e.g. angle, signal strength, time of flight etc.) agldte them to positional estimates
through localization algorithms (e.g. multilateratiomangulation). With the transition from elec-



tric to electronic lighting and the ubiquity of light in indo spaces, visible light may prove to be
the next communication infrastructure to exploit for lozation services. The benefits of visible
light as a localization medium are its directionality, sh@nge, and impulse response, while its
issues to overcome are installation accuracy, network lagatification, coexistence of WiFi and
VLC [17], and efficient multiple access schemes [5].

To provide a theoretical analysis and simulation of the psagl algorithm, a model of the VLC
channel is required. The channel impulse respoh&g, model is that proposed in a character-
ization of the channel through simulation [2][6] to accotmtt reflections that lead to temporal
dispersion im(t).

Source

Receiver

Figure 1: Source Receiver Channel Model lllustration [6]

Due to the directionality of visible light systems, the @lling vector structure is employed
to describe the geometry of a source-receiver pair. A typiE® source can be represented by
S, = {rs,,Ns,,my, P, }, Vk € L; rs, = [rx,yx, 217 is the source positioms, is the source
orientation,n is the Lambertian mode number associated with the dirégtfithe sourcepr, is
the source’s transmit power, aids the number of sources in the space.

Whereas the simple receiver is defined?s = {rg;, Ng,, Ag,, FOV;}, Vj € T, rg, =
[z;,y;,7]" is the receiver positioMy, is the orientation Ay, is the receiver are@'OV; is the
receiver’s field of view, and" is the number of receivers in the space . Provided a rdngebe-
tween thek"source and thg'" receivery; ;. is the angle of incidence betweap, and(rs, —rx,)
and¢y ; is the angle of irradiance betweép, and(rg, —rs,).
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cos(f;x) = Ng, - D 1)
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cos(¢p,;) = As, - Tk 2)
7]

Given the performance parameters of the sources and reseiecan define the maximum pos-
sible received power i, 6;) = (0,0), which provides a bound on the power scale the receiver
would observe if directly under a luminaire with a perfedligned LOS.

(mk + 1)ARJ- PTk

P00 = Tora 2

3)
Typically the impulse response of the channel is modeled ssaked (based on the geometric
properties identified) and shifted impulse. This treatnfait$ to account for the reflections and
scattering that are often encountered by optical transomssResearchers often account for the
multipath effect through an exponential factoapplied to the propagation model.

P, ;(0,0) cos™ " (¢y. ;) cos™ (6. ;)
Pk,a(‘?hw elm) - D]?;,j/(zk _ zj)Q 4)

The development of a software model, CandLES, designedé&specific purpose of charac-
terizing the lighting and communication performance of VisGorovided in [2]. This model can
provide the impulse responses for an arbitrary configunatictransceivers and blockage objects
along with the illumination pattern without the need for engally determining an appropriate
multipath parametet. Furthermore, the transmission is also corrupted by addithite Gaussian
noise (AWGN), whose Power Spectral Density (PSD) is constdrthe receiver due to thermal
noise.

The PSD of the LED source also has an impact on the commuuricaéirformance. The PSD
of the transmission at the output of the channel is propoalido the PSD of the transmission
PSDx, (\) o< PSDx()).

This produces a PSIRSDx, )+~ (A), which is observed by the receiver optics. Firstly, this
signal is concentrated and filtered by to alter the PSP, c which allows the received
energy to be optically focused on the detection device @iote),Rp,()\) after being appropri-
ately filtered byRor (). The signal and noise terms of the received waveform can peessed
as summations over the wavelengths in the band of interest.

P=>"A-PSDx,c(A) - Ror(X) - Rpa(A) - AX (5)
A

N =Y " A-PSDyc(N) - Ror(\) - Rea(X) - AX (6)
A

The SNR can now be defined as the ratio of signal power to thaduptf unit electron charge,
the noise, and the signaling rate,.

2
Pk,j

SNR., — — ki
7 (q- Nij)- Ry

(7)
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Figure 2: VLC System Blocks: Transmission, Channel, anceRgon

With an understanding of the VLC channel, measurements raagxtracted from it such as re-
ceived signal strength (RSS), angle of arrival (AoA), tiniféedlence of arrival (TDoA), and/or time
of arrival (ToA). Due to the directionality and the short gemature of VLC, some measurement
types are more attractive than others when consideringjzotqa communication capable device.

This investigation used RSS and AoA measurements from giblgilight channel to determine
the target’s position.

3 System and Algorithm Description

The CandLES simulation environment [2] is used to model a 4y 3.5 meter room, with

twelve (12) luminaries mounted to the ceiling and receiagrsarying discrete positions within the
room. Figure 3 provides a view of the indoor environment nhodeng CandLES. The simulation
parameters are provided in Table 1.

The model measures the system impulse response, noiss, lagelvell as signal power and
reception angles at each of the discrete receiver locatiomseach of the twelve luminaire anchors
by coordinating multiple access to the visible light chdnnea time division approach. The
multiple access scheme may be expanded to use codes, fogdoans, or even wavelengths and
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Figure 3: Indoor Environment Model

will be considered in future work. The collection of theseasigrements within this indoor space

are used as input to the proposed localization algorithreiher

One of the primary requirements of this environment is tovigle adequate lighting in the
space. As observed in equations (7), the SNR can be very bigidiequate illumination. The
metric used is 200- 500 Ix at desk surface, which is consttieyde one meter above the floor.

Figure 4 illustrates the illumination coverage in this eamiment.

3.1 CoarsePhaseAlgorithm

Thecoarsephase of the target localization algorithm depends heawilthe infrastructure layout
of the luminaire anchors. Prior localization approachethécontext of sectors or cells has been
investigated [1]. These approaches are able to bound th&t wase localization error to the radius

of the sector itself through code signaling or in-range sens

The context of WiFi/VLC cooperative localization [17] isregidered within an indoor environ-
ment, equipped with LED luminaries designed and distritbutea manner such that the illumina-

tion requirement is satisfied.

The implication of the illumination requirement from a comnications perspective, simply
guarantees connectivity over the majority of the indoorimment. Thek! luminaire is as-



Table 1: Indoor Localization Parameters

Parameter Value
Optical Tx Power Pr) 1.9649 W
Lambertian Modém,) 30

Effective Area of Rx(Ag) 0.81 cnt
Electron Chargéq) 1.6 x 1071 C
Background Light Currentl,,) 5100 pA

Speed of Lightc)
Noise PSD(N,)

2.998 x 108 m/s
1.632 x 1072 W/Hz

Optical/Electrical Efficiency~y) 0.53

Source Orientatiofing, ) [0,0,-1]"

Range of Receiver Azimutdz 0Otor

Range of Receiver Elevatidiil 0ton

Receiver Orientatiofy, ) [0,0,0f — [0,0, —1]F
Vertical Range(z;, — z;) 2.2m

Symbol Ratg R;,) 20 MHz

Field of View (FFOV') 10-180 degrees
Wall Reflectivity % Re flect 60%

sumed to be installed at a positiog, desireain the relative coordinate frame along with its relative
orientationns, gesired hOWeVver these absolute positions and orientations ajedub installation
EITOIS(I's, e Ny oser)» WHiCh @are modeled as Gaussian noise.

r.‘S‘/c,aclual = r.S/c,desired + rSk,offsel ’Vk 6 L (8)

nSk,acluaI = nSk,desired+ nSk,offsel ’Vk 6 L (9)

Furthermore, the coarse algorithm leverages the work damawdtiple access [5] for the visible
light channel. At the network layer each landmark lumin&nequired to have its own unique ID,
and the capability to packetize the position, orientattaansmit optical power, and beam pattern
mode as outlined in the Figure 5. The mobile target has thalxbty to process the network layer
packets and measure the optical power for each luminamsrrgsion in the sequence and report
an estimate when firstly entering the environment. The nd@a iis that prior to establishing a
communication connection, the device broadcasts its peest the infrastructure. The coarse
estimate is obtained as a weighted positional estimate evh@sghts are the measured optical
power from each luminaire. Additional binary weighitsare applied to the received optical power
to discount outliers in the observations, which can occuaating orientations. This investigation
used a received power threshold16f dB. Equation 10 outlines the coarse weighted estimate of
device location.

L
rR o Ek:l ﬁkpk,](gbkvﬁ ek,j)rsk,desired
j=
i1 BePes( D5, Oh )

The only constraint on the rat&;, at which the coarse sequence is transmitted is that therpowe
level variation appears uniform to the user in the room. Mueg, the specific implementation of

(10)
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Figure 4: Indoor Environment lllumination Levels at a Heigh1l Meter
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Figure 5: Broadcast VLC Packet

the multiple access is not considered in this paper. Oneeofdigest benefits of this approach
is that simply observing the brightest luminaire does netdyian appropriate feasible guess of
location, especially when multiple luminaries are wittie £'oV'. Thecoarsephase concludes by
returning the AOA measurements it expects to observe ifitb@hase.
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Figure 6: Localization Process between Target and Infragire

3.2 FinePhaseAlgorithm

The orientation of the target is crucial and the determamabf target location is geometry and
search related given the information available. Toarsephase of the algorithm measured
Py, j(¢x.3,0x;) and provided an initial guess of the rang®, ; = [[fr; — I's, sued|- Therefore,
In certain circumstances, we may assume fhat= ¢, ;, Vk € L, j € M Under this assumption,
we may compute an estimate for the angle of incidefice,

P (B, 00)\ T
g, . = 1 »J RV 11
ke < Pe5(0,0) -

The fine phase of the positioning algorithm served to improve th@ahcoarse estimate by
measuring bearing and elevation angles observed from titemark luminaries and triangulat-
ing its position. There are several approaches to triatigunlan the literature such as itera-
tive search,geometric circle intersection, geometremgulation, Newton-Raphson method [16].
Firstly, to place the AoA analysis discussion into contgkte attention to the geometry outlined
in Figure 7.

Typically three dimensional triangulation requires foaference anchors due to the fact that
each anchor provides one independent AOA measurement tedewer. However, if the receiver
is capable of measuring both Azimuth, ;) and Elevation(dy, ;) with respect to its orientation



ng: Rx Orientation Vector
Ng,: Source Orientation Vector
¥r,s,: Azimuth Angle in Rx Frame
ap s, Zenith Angle in Rx Frame
fOr,s,: Angle of Rx Incidence
¢s,,r: Angle of Source Irradiance

Figure 7: Triangulation lllustration

axis (e.g the:-axis ishr) , only two anchors are required for triangulation. L&tand D, denote
the inter-luminaire spacing in the andy directions, mounted on the ceiling. Given these two

distances any inter-anchor distanég,can be computed when determining which anchors to use
for triangulation. Furthermore, we may compute the rang#wéen the anchors = 1,2 and the

5" receiver of interest as follows:

D\/ 1+ tan2 1;3'71
Dj,l -

sin d; 1 (tan %‘,1 tan 1;3'2)

D\/ 1+ tan2 1&;’,2
D.. —

j? . ~ n n
sin & o(tan ;1 tan; 2)
X; X D i sin & i, cos %‘,k
Y;‘ = Yk + Dij sin ééjJC sin ¢j,k
Z; Z D\ cosayj g

(12)

(13)

(14)

It can be seen in equations 12 through 14, that given trueumeaents of the Azimutbz[;kvj =
Yy,.;) and Elevationay ; = a4, ;) between the receiver and two anchor luminaries, the positio

the receiver can be analytically computed. Due to the nosaliity of the transformation

s, bias

and precision errors in the angular measurements can chfgtaffect the estimate of receiver
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position. There are measures to be taken to bound the affese tinstrumentation errors can
propagate. Given that lighting sources are typically ithestiain a fixed location within the indoor
space, we may derive a geometric constraint [18] which aidse removal of poor measurements.
In this paper, however, we assume that the light sourcesmatieeoceiling as in Figure 3 and can
derive the geometric constraint according to the illugtrain Figure 7.

T
e = [61/)1,]'7 €al’j, €¢27j, 6a27j] (15)
We propose to minimize the square erfge) subject to the geometric constraire).
argmin,  f(e) = ele
subjectto c(e) = 0 (16)
We can observe that the constraint based on this configanatgiven by:
C(e) = COt(g - al,j) Sin(wl,j)_ (17)
cot(§ — ag ;) sin(m — 1Py ;) = 0

This constrained optimization problem may be solved Lagiamfunctions and may be trans-
formed into a more computationally effective Quadraticgfamming (QP) problem [18]. The
optimization is iterative and have pre-established peréorce criteria established such as an error
tolerance { > 0): |le;x1 — €;|| < v to prevent demising returns on computation or subject to a
maximum iteration constraintz,,,,, = IV, to prevent excessive computation time.

4 Results

The two phase hybrid localization system is applied to therenment model (Figure 3), using
the range of parameters in Table 1.
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Figure 8: Coarse Performance for Varying Field of Views agrecfion of Receiver Orientation

Firstly, the effect of orientation and field of view on the ee@r design was studied to bound
the design space; if the coarse performance is poor or noaflgrill defined, the fine phase of the
algorithm is of no use. Figure 8 illustrates the mean Euelidéistance error as an intensity plot
for fixed field of views as a function of receiver orientatigke{muth and Elevation in its local
coordinate frame).

Itis observed that foF'oV” ¢ [70, 110], there are potential orientation configurations in which a
coarse estimate cannot be made (as seen as white patchgsa&). The 90 degreéoV provides
the best mean Euclidean distance accuracy performancalbveceiver orientation ranging from
42 cm to 55 cm when not being directly beneath luminaries. Taking thisitaato account, the
spatial error distribution is investigated for the coarbage of the algorithm. The mean accuracy
error over the indoor simulation space is found to3e88 cm. The intensity map of accuracy
error is shown in Figure 9. The largest spatial contributirerror are the poorly illuminated
areas; however occupants are generally not isolated te t@ser areas. We can observe that
the coarse phase effectively groups the receiver to thesidsminaries or combination thereof,
therefore the performance of this scheme is best when tleévezds in the closest proximity to
luminaries.
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Figure 9: Coarse Algorithm Location Estimation Error Salkiistribution
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The fine phase of the algorithm serves to improve the initarse estimate. As observed in
Figure 10, the Euclidean distance error is improved oveirtiegior of the room when compared to
the coarse phase performance as the receiver is able te atniseful independent measurements
and can refine the initial coarse estimate. . It is noticetdwer, that the fine phase processing
has little impact on the poorly illuminated sections of tkem. The median accuracy over the
complete room i43.95 cm.

The results reported offer significant improvements ovatesof the art piggyback approaches
due to both the ubiquity and distribution of anchor sourcewipged throughout the indoor en-
vironment as well as the directionality of the medium ovelichiithe localization is performed.
Moreover the computational complexity is low as a coarsenasé is found within one multiple
access cycle, whereas the fine estimate arrives at a solitioin four iterations on average. This
algorithm is performed in the mobile device and can be thooghs distributed; however as we
have shown herein the device may report its estimates ajGttibn to the infrastructure to allow
the infrastructure to provide services or resources to thieile device.

Fine Localization Error Distribution
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Figure 10: Fine Algorithm Location Estimation Error Spabastribution
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5 Conclusonsand Future Wor k

Localization algorithms, which adhere to the exploitatedncommunication infrastructure (e.g.
WiFi, Bluetooth), typically perform poorly (e.g. accurasiof 1 meter or more) and moreover often
require sophisticated learning algorithms or fingerpnigtnethods to achieve that performance. A
lighting infrastructure based on solid state LED illumioatand communication was introduced. It
was found that the directionality and increased numbenafri@arks enabled superior performance
using the proposed two phase algorithm than the state oftla@aroaches for WiFi or Bluetooth.
Despite the findings being intuitive from a heuristics sfamidt it's the application to lighting (a
common indoor necessity) that enables these improvemsintg simple weighted average and
triangulation approaches. Our results show that visilgktlis one of the most viable solutions
to indoor positioning due to its directionality, short imMpel response, and the distribution and
ubiquity of anchor luminaries to meet the illumination need indoor spaces. Future work will
consider occupied spaces with more multipath effects aserobd along with varying lighting
configurations.
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